Spaces:
Runtime error
Runtime error
File size: 3,661 Bytes
c2f1466 722ab73 c2f1466 40641cd cf7a07e da9b438 7192ffe d79f686 da9b438 81fa9ce e846f7d c2f1466 c374d69 c2f1466 da9b438 6392832 6b65fd5 447a98e 6b65fd5 d6a0df6 6b65fd5 95f3d09 ba70b81 c2f1466 2dbb094 e67d0e1 af3bce5 d51e091 c2f1466 2a18f96 64b66a8 25775c4 9eb39ef fb02a49 7b2578b f80e951 c2f1466 6880e23 4fe2d13 c661741 27520ac 855cd42 883fd24 bc406e3 c374d69 c2f1466 4d99237 6b65fd5 c2f1466 5be15aa d79f686 5be15aa 3104338 5be15aa 6872135 080601a 5be15aa 3104338 5be15aa 3104338 5be15aa 3104338 5be15aa bb27ec9 cca4ecc 1979413 8bd8f14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
from gradio_client import Client as GrClient
import inspect
from gradio import routes
from typing import List, Type
from aiogoogletrans import Translator
import requests, os, re, asyncio
loop = asyncio.get_event_loop()
gradio_client = GrClient(os.environ.get('GrClient_url2'))
translator = Translator()
# Monkey patch
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
# App code
def mbti(x):
t = loop.run_until_complete(translator.translate(x, src='ko', dest='en'))
str_trans = re.sub('[-=+,#/\?:^.@*\"β»~γ!γβ|\(\)\[\]`\'β¦γ\β\β\βΒ·]', '', t.text)
result = gradio_client.predict(
str_trans, # str representing input in 'User input' Textbox component
fn_index=2
)
r = sorted(eval(result), key=lambda x : x['score'], reverse=True)
return r
def chat(x):
x = f"[***λλ Assistantμ
λλ€. μλμκ² λ€μν μ§λ¬Έμ νλ©° λνλ₯Ό μ΄λκ³ μμ΅λλ€. Humanμκ² κΈμ μ μ΄κ³ , 곡κ°νλ©°, μ΅λν κΈΈκ² λλ΅ν΄μ£ΌμΈμ***] {x}"
x = x.replace('friend','Human').replace('you','Assistant')
x_list = x.rsplit('\n',1)
x = x_list[0]+"\n\n### \n"+x_list[1]
print("\n___________________\n" + f"{x}")
result = gradio_client.predict(
x,
# str representing input in 'User input' Textbox component
0.91, # float, representing input in 'Top-p (nucleus sampling)' Slider component
40, # int, representing input in 'Top-k (nucleus sampling)' Slider component
0.65, # float, representing input in 'Temperature' Slider component
20, # int, representing input in 'Max New Tokens' Slider component
1.2, # float, representing input in 'repetition_penalty' Slider component
fn_index=0
)
result = str(result)
output = result[len(x.rsplit(':', 1)[0])+2:]
output = re.sub('νν','γ
γ
', output)
output = output.split('λ')[0]
output = output.split('endoftext')[0]
output = re.sub('[=+#/\:@*\"β»γγβ|\\\<\>\(\)\[\]`\'β¦γ\β\β\βΒ·]', '', output)
#output = re.sub('[a-zA-Z]',' ',output)
return output
def yn(x):
result = gradio_client.predict(
x, # str representing input in 'User input' Textbox component
fn_index=1
)
return result
with gr.Blocks() as demo:
count = 0
aa = gr.Interface(
fn=chat,
inputs="text",
outputs="text",
description="chat",
#examples= [[f"\nfriend: λλ κΏμ΄ λμΌ? \nyou: "],[f"\nyou: λλ λ¬΄μ¨ μμ κ°μ₯ μ’μν΄? \nfriend: κΈμ λλ? \nyou: "]]
examples= [[f"\nHuman: λλ κΏμ΄ λμΌ? \nAssistant: "],[f"\nAssistant: λλ λ¬΄μ¨ μμ κ°μ₯ μ’μν΄? \nHuman: λλ νλμμ΄ μ’λλΌ. λλ? \nAssistant: "]]
)
bb = gr.Interface(
fn=mbti,
inputs="text",
outputs="text",
description="mbti"
)
cc = gr.Interface(
fn=yn,
inputs="text",
outputs="text",
description="yn",
examples= [[f"κ·ΈλλΌ"],[f"λ³λ‘ λ°?"]]
)
demo.queue(max_size=32).launch(enable_queue=True) |