Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,88 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
import requests, os, re, asyncio, queue
|
6 |
-
import math
|
7 |
import time
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
doc_lines = doc.split("\n")
|
26 |
-
docset.append(doc_lines[-1].split(":")[-1])
|
27 |
-
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
|
28 |
-
return docset, types
|
29 |
-
routes.get_types = get_types
|
30 |
-
|
31 |
-
user_data = dict()
|
32 |
-
live_user = dict()
|
33 |
-
chat_history = []
|
34 |
-
|
35 |
-
|
36 |
-
def register(id, pw):
|
37 |
-
if not id in user_data:
|
38 |
-
user_data[id] = pw
|
39 |
-
return "ok"
|
40 |
-
else:
|
41 |
-
return "fail"
|
42 |
-
|
43 |
-
def login(id, pw):
|
44 |
-
if not id in user_data:
|
45 |
-
return "fail"
|
46 |
-
else:
|
47 |
-
if user_data[id] != pw:
|
48 |
-
return "fail"
|
49 |
-
else:
|
50 |
-
live_user[id] = 20
|
51 |
-
return "ok"
|
52 |
-
|
53 |
-
def chat(name, text, time):
|
54 |
-
if not name in user_data:
|
55 |
-
return "no id"
|
56 |
-
else:
|
57 |
-
chat_history.append({"name": name, "text":text, "time":time})
|
58 |
-
return "ok"
|
59 |
-
|
60 |
-
def get_data(name):
|
61 |
-
global live_user
|
62 |
-
for u in live_user.keys():
|
63 |
-
if u == name:
|
64 |
-
live_user[u] = 20
|
65 |
-
else:
|
66 |
-
live_user[u] -= 1
|
67 |
-
if live_user[u] < 0:
|
68 |
-
del live_user[u]
|
69 |
-
return chat_history
|
70 |
-
|
71 |
-
def get_live_user():
|
72 |
-
return live_user.keys()
|
73 |
-
|
74 |
-
def clear_data():
|
75 |
-
global chat_history
|
76 |
-
chat_history = []
|
77 |
-
return "ok"
|
78 |
-
|
79 |
-
|
80 |
-
with gr.Blocks() as demo:
|
81 |
-
count = 0
|
82 |
-
gr.Markdown(
|
83 |
-
f"{chat_history}"
|
84 |
-
)
|
85 |
-
aa = gr.Interface(
|
86 |
-
fn=chat,
|
87 |
-
inputs=["text", "text", "text"],
|
88 |
-
outputs="text",
|
89 |
-
description="chat",
|
90 |
-
)
|
91 |
-
bb = gr.Interface(
|
92 |
-
fn=login,
|
93 |
-
inputs=["text", "text"],
|
94 |
-
outputs="text",
|
95 |
-
description="login",
|
96 |
-
)
|
97 |
-
cc = gr.Interface(
|
98 |
-
fn=register,
|
99 |
-
inputs=["text", "text"],
|
100 |
-
outputs="text",
|
101 |
-
description="register",
|
102 |
-
)
|
103 |
-
dd = gr.Interface(
|
104 |
-
fn=get_data,
|
105 |
-
inputs=["text"],
|
106 |
-
outputs="text",
|
107 |
-
description="get_data",
|
108 |
-
)
|
109 |
-
gg = gr.Interface(
|
110 |
-
fn=get_live_user,
|
111 |
-
inputs=[],
|
112 |
-
outputs="text",
|
113 |
-
description="get_live_user",
|
114 |
-
)
|
115 |
-
ss = gr.Interface(
|
116 |
-
fn=clear_data,
|
117 |
-
inputs=[],
|
118 |
-
outputs="text",
|
119 |
-
description="clear_data",
|
120 |
)
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import whisper
|
4 |
+
from whisper import tokenizer
|
|
|
|
|
|
|
5 |
import time
|
6 |
+
|
7 |
+
current_size = 'base'
|
8 |
+
model = whisper.load_model(current_size)
|
9 |
+
AUTO_DETECT_LANG = "Auto Detect"
|
10 |
+
|
11 |
+
def transcribe(audio, state={}, model_size='base', delay=1.2, lang=None, translate=False):
|
12 |
+
time.sleep(delay - 1)
|
13 |
+
|
14 |
+
global current_size
|
15 |
+
global model
|
16 |
+
if model_size != current_size:
|
17 |
+
current_size = model_size
|
18 |
+
model = whisper.load_model(current_size)
|
19 |
+
|
20 |
+
transcription = model.transcribe(
|
21 |
+
audio,
|
22 |
+
language = lang if lang != AUTO_DETECT_LANG else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
+
state['transcription'] += transcription['text'] + " "
|
25 |
+
|
26 |
+
if translate:
|
27 |
+
x = whisper.load_audio(audio)
|
28 |
+
x = whisper.pad_or_trim(x)
|
29 |
+
mel = whisper.log_mel_spectrogram(x).to(model.device)
|
30 |
+
|
31 |
+
options = whisper.DecodingOptions(task = "translation")
|
32 |
+
translation = whisper.decode(model, mel, options)
|
33 |
+
|
34 |
+
state['translation'] += translation.text + " "
|
35 |
+
|
36 |
+
return state['transcription'], state['translation'], state, f"detected language: {transcription['language']}"
|
37 |
+
|
38 |
+
|
39 |
+
title = "OpenAI's Whisper Real-time Demo"
|
40 |
+
description = "A simple demo of OpenAI's [**Whisper**](https://github.com/openai/whisper) speech recognition model. This demo runs on a CPU. For faster inference choose 'tiny' model size and set the language explicitly."
|
41 |
+
|
42 |
+
model_size = gr.Dropdown(label="Model size", choices=['base', 'tiny', 'small', 'medium', 'large'], value='base')
|
43 |
+
|
44 |
+
delay_slider = gr.inputs.Slider(minimum=1, maximum=5, default=1.2, label="Rate of transcription")
|
45 |
+
|
46 |
+
available_languages = sorted(tokenizer.TO_LANGUAGE_CODE.keys())
|
47 |
+
available_languages = [lang.capitalize() for lang in available_languages]
|
48 |
+
available_languages = [AUTO_DETECT_LANG]+available_languages
|
49 |
+
|
50 |
+
lang_dropdown = gr.inputs.Dropdown(choices=available_languages, label="Language", default=AUTO_DETECT_LANG, type="value")
|
51 |
+
|
52 |
+
if lang_dropdown==AUTO_DETECT_LANG:
|
53 |
+
lang_dropdown=None
|
54 |
+
|
55 |
+
translate_checkbox = gr.inputs.Checkbox(label="Translate to English", default=False)
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
transcription_tb = gr.Textbox(label="Transcription", lines=10, max_lines=20)
|
60 |
+
translation_tb = gr.Textbox(label="Translation", lines=10, max_lines=20)
|
61 |
+
detected_lang = gr.outputs.HTML(label="Detected Language")
|
62 |
+
|
63 |
+
state = gr.State({"transcription": "", "translation": ""})
|
64 |
+
|
65 |
+
gr.Interface(
|
66 |
+
fn=transcribe,
|
67 |
+
inputs=[
|
68 |
+
gr.Audio(source="microphone", type="filepath", streaming=True),
|
69 |
+
state,
|
70 |
+
model_size,
|
71 |
+
delay_slider,
|
72 |
+
lang_dropdown,
|
73 |
+
translate_checkbox
|
74 |
+
],
|
75 |
+
outputs=[
|
76 |
+
transcription_tb,
|
77 |
+
translation_tb,
|
78 |
+
state,
|
79 |
+
detected_lang
|
80 |
+
],
|
81 |
+
live=True,
|
82 |
+
allow_flagging='never',
|
83 |
+
title=title,
|
84 |
+
description=description,
|
85 |
+
).launch(
|
86 |
+
# enable_queue=True,
|
87 |
+
# debug=True
|
88 |
+
)
|