leannebriffa commited on
Commit
9aff8dd
·
1 Parent(s): 47155cb

app.py fix

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -94,6 +94,12 @@ def make_prediction(alcohol, arrest_type, belts, contributed_to_accident, disobe
94
  prediction = tf["LabelEncoder"].inverse_transform(np.argmax(prediction, axis=1))
95
 
96
  # Return the prediction
 
 
 
 
 
 
97
  return prediction[0]
98
 
99
 
@@ -114,12 +120,13 @@ iface = gr.Interface(fn=make_prediction,
114
  gr.components.Checkbox(label='Did the violation involve any property damage?'),
115
  gr.components.Dropdown(label='Choose the race of the driver', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[2]), value='WHITE'),
116
  gr.components.Checkbox(label='Did the driver fail to obey signs and markings (such as traffic control device instructions, stop lights, red signal and stop sign lines)?'),
117
- gr.components.Dropdown(label='Choose the race of the driver', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[3]), value='NO SEARCH CONDUCTED'),
118
  gr.components.Checkbox(label='Was the driver caught speeding?'),
119
  gr.components.Slider(maximum=23, step=1, label='Time HOUR when stop occurred in 24-hour format'),
120
  gr.components.Slider(minimum=2012, maximum=2024, step=1, label='Year when stop occurred'),
121
  gr.components.Dropdown(label='What is the name of the subagency that conducted the traffic stop?', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[1]), value='4th District, Wheaton'),
122
  gr.components.Checkbox(label='Was the vehicle safe and up to standards (lights properly switched, registration plates attached etc.)?'),
 
123
  gr.components.Slider(minimum=1970, maximum=2023, step=1, label='Year of manufacture of the vehicle:')],
124
  outputs=["text"])
125
 
 
94
  prediction = tf["LabelEncoder"].inverse_transform(np.argmax(prediction, axis=1))
95
 
96
  # Return the prediction
97
+ # if prediction[0] == 0:
98
+ # return 'SERO'
99
+ # elif prediction[0] == 1:
100
+ # return 'Warning'
101
+ # else:
102
+ # return 'Citation'
103
  return prediction[0]
104
 
105
 
 
120
  gr.components.Checkbox(label='Did the violation involve any property damage?'),
121
  gr.components.Dropdown(label='Choose the race of the driver', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[2]), value='WHITE'),
122
  gr.components.Checkbox(label='Did the driver fail to obey signs and markings (such as traffic control device instructions, stop lights, red signal and stop sign lines)?'),
123
+ gr.components.Dropdown(label='What was the outcome of the search (if conducted)?', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[3]), value='NO SEARCH CONDUCTED'),
124
  gr.components.Checkbox(label='Was the driver caught speeding?'),
125
  gr.components.Slider(maximum=23, step=1, label='Time HOUR when stop occurred in 24-hour format'),
126
  gr.components.Slider(minimum=2012, maximum=2024, step=1, label='Year when stop occurred'),
127
  gr.components.Dropdown(label='What is the name of the subagency that conducted the traffic stop?', choices=list(tf['OneHotEncoder'].transformers_[0][1].categories_[1]), value='4th District, Wheaton'),
128
  gr.components.Checkbox(label='Was the vehicle safe and up to standards (lights properly switched, registration plates attached etc.)?'),
129
+ gr.components.Dropdown(label='What is the vehicle type?', choices=list(tf['OrdinalEncoder_HighCardinality'].categories_[1]), value='02 - Automobile'),
130
  gr.components.Slider(minimum=1970, maximum=2023, step=1, label='Year of manufacture of the vehicle:')],
131
  outputs=["text"])
132