|
from threading import Thread |
|
from typing import Iterator |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TextIteratorStreamer, |
|
) |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = 4096 |
|
|
|
DESCRIPTION = """\ |
|
# Llama-2 13B Chat |
|
|
|
This Space demonstrates model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, a Llama 2 model with 13B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints). |
|
|
|
๐ For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2). |
|
|
|
๐จ Looking for an even more powerful model? Check out the large [**70B** model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI). |
|
๐ For a smaller model that you can run on many GPUs, check our [7B model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat). |
|
|
|
""" |
|
|
|
LICENSE = """ |
|
<p/> |
|
|
|
--- |
|
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, |
|
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md). |
|
""" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "meta-llama/Llama-2-13b-chat-hf" |
|
config = AutoConfig.from_pretrained(model_id) |
|
config.pretraining_tp = 1 |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, config=config, torch_dtype=torch.float16, load_in_4bit=True, device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.use_default_system_prompt = False |
|
|
|
|
|
@spaces.GPU |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
system_prompt: str, |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.6, |
|
top_p: float = 0.9, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.2, |
|
) -> Iterator[str]: |
|
conversation = [] |
|
if system_prompt: |
|
conversation.append({"role": "system", "content": system_prompt}) |
|
for user, assistant in chat_history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
chat = tokenizer.apply_chat_template(conversation, tokenize=False) |
|
inputs = tokenizer(chat, return_tensors="pt", add_special_tokens=False).to("cuda") |
|
if len(inputs) > MAX_INPUT_TOKEN_LENGTH: |
|
inputs = inputs[-MAX_INPUT_TOKEN_LENGTH:] |
|
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") |
|
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_p=top_p, |
|
top_k=top_k, |
|
temperature=temperature, |
|
num_beams=1, |
|
repetition_penalty=repetition_penalty, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
additional_inputs=[ |
|
gr.Textbox(label="System prompt", lines=6), |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=0.6, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.2, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["Hello there! How are you doing?"], |
|
["Can you explain briefly to me what is the Python programming language?"], |
|
["Explain the plot of Cinderella in a sentence."], |
|
["How many hours does it take a man to eat a Helicopter?"], |
|
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], |
|
], |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") |
|
chat_interface.render() |
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|