File size: 5,225 Bytes
a95c1b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#               2024 Alibaba Inc (authors: Xiang Lyu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
import json
import math
from functools import partial

import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
from cosyvoice.utils.file_utils import read_lists, read_json_lists


class Processor(IterableDataset):

    def __init__(self, source, f, *args, **kw):
        assert callable(f)
        self.source = source
        self.f = f
        self.args = args
        self.kw = kw

    def set_epoch(self, epoch):
        self.source.set_epoch(epoch)

    def __iter__(self):
        """ Return an iterator over the source dataset processed by the
            given processor.
        """
        assert self.source is not None
        assert callable(self.f)
        return self.f(iter(self.source), *self.args, **self.kw)

    def apply(self, f):
        assert callable(f)
        return Processor(self, f, *self.args, **self.kw)


class DistributedSampler:

    def __init__(self, shuffle=True, partition=True):
        self.epoch = -1
        self.update()
        self.shuffle = shuffle
        self.partition = partition

    def update(self):
        assert dist.is_available()
        if dist.is_initialized():
            self.rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        else:
            self.rank = 0
            self.world_size = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            self.worker_id = 0
            self.num_workers = 1
        else:
            self.worker_id = worker_info.id
            self.num_workers = worker_info.num_workers
        return dict(rank=self.rank,
                    world_size=self.world_size,
                    worker_id=self.worker_id,
                    num_workers=self.num_workers)

    def set_epoch(self, epoch):
        self.epoch = epoch

    def sample(self, data):
        """ Sample data according to rank/world_size/num_workers

            Args:
                data(List): input data list

            Returns:
                List: data list after sample
        """
        data = list(range(len(data)))
        # force datalist even
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            if len(data) < self.world_size:
                data = data * math.ceil(self.world_size / len(data))
                data = data[:self.world_size]
            data = data[self.rank::self.world_size]
        if len(data) < self.num_workers:
            data = data * math.ceil(self.num_workers / len(data))
            data = data[:self.num_workers]
        data = data[self.worker_id::self.num_workers]
        return data


class DataList(IterableDataset):

    def __init__(self, lists, shuffle=True, partition=True):
        self.lists = lists
        self.sampler = DistributedSampler(shuffle, partition)

    def set_epoch(self, epoch):
        self.sampler.set_epoch(epoch)

    def __iter__(self):
        sampler_info = self.sampler.update()
        indexes = self.sampler.sample(self.lists)
        for index in indexes:
            data = dict(src=self.lists[index])
            data.update(sampler_info)
            yield data


def Dataset(data_list_file,
            data_pipeline,
            mode='train',
            shuffle=True,
            partition=True,
            tts_file='',
            prompt_utt2data=''):
    """ Construct dataset from arguments

        We have two shuffle stage in the Dataset. The first is global
        shuffle at shards tar/raw file level. The second is global shuffle
        at training samples level.

        Args:
            data_type(str): raw/shard
            tokenizer (BaseTokenizer): tokenizer to tokenize
            partition(bool): whether to do data partition in terms of rank
    """
    assert mode in ['train', 'inference']
    lists = read_lists(data_list_file)
    # import pdb 
    # pdb.set_trace()
    if mode == 'inference':
        with open(tts_file) as f:
            tts_data = json.load(f)
        utt2lists = read_json_lists(prompt_utt2data)
        # filter unnecessary file in inference mode
        lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
    dataset = DataList(lists,shuffle=shuffle,partition=partition)
    if mode == 'inference':
        # map partial arg tts_data in inference mode
        data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
    for func in data_pipeline:
        dataset = Processor(dataset, func, mode=mode)
    return dataset