Spaces:
Runtime error
Runtime error
import typing as tp | |
import torch | |
from einops import rearrange | |
from torch import nn | |
from torch.nn import functional as F | |
from x_transformers import ContinuousTransformerWrapper, Encoder | |
from .blocks import FourierFeatures | |
from .transformer import ContinuousTransformer | |
from model.stable import transformer_use_mask | |
class DiffusionTransformerV2(nn.Module): | |
def __init__(self, | |
io_channels=32, | |
patch_size=1, | |
embed_dim=768, | |
cond_token_dim=0, | |
project_cond_tokens=True, | |
global_cond_dim=0, | |
project_global_cond=True, | |
input_concat_dim=0, | |
prepend_cond_dim=0, | |
depth=12, | |
num_heads=8, | |
transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers", | |
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend", | |
**kwargs): | |
super().__init__() | |
d_model = embed_dim | |
n_head = num_heads | |
n_layers = depth | |
encoder_layer = torch.nn.TransformerEncoderLayer(batch_first=True, | |
norm_first=True, | |
d_model=d_model, | |
nhead=n_head) | |
self.transformer = torch.nn.TransformerEncoder(encoder_layer, num_layers=n_layers) | |
# ===================================== timestep embedding | |
timestep_features_dim = 256 | |
self.timestep_features = FourierFeatures(1, timestep_features_dim) | |
self.to_timestep_embed = nn.Sequential( | |
nn.Linear(timestep_features_dim, embed_dim, bias=True), | |
nn.SiLU(), | |
nn.Linear(embed_dim, embed_dim, bias=True), | |
) | |
def _forward( | |
self, | |
Xt_btd, | |
t, #(1d) | |
mu_btd, | |
): | |
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim) | |
cated_input = torch.cat([t,mu,x_t]) | |
### 1. 需要重新写过以适应不同长度的con | |
if cross_attn_cond is not None: | |
cross_attn_cond = self.to_cond_embed(cross_attn_cond) | |
if global_embed is not None: | |
# Project the global conditioning to the embedding dimension | |
global_embed = self.to_global_embed(global_embed) | |
prepend_inputs = None | |
prepend_mask = None | |
prepend_length = 0 | |
if prepend_cond is not None: | |
# Project the prepend conditioning to the embedding dimension | |
prepend_cond = self.to_prepend_embed(prepend_cond) | |
prepend_inputs = prepend_cond | |
if prepend_cond_mask is not None: | |
prepend_mask = prepend_cond_mask | |
if input_concat_cond is not None: | |
# Interpolate input_concat_cond to the same length as x | |
if input_concat_cond.shape[2] != x.shape[2]: | |
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2],), mode='nearest') | |
x = torch.cat([x, input_concat_cond], dim=1) | |
# Get the batch of timestep embeddings | |
try: | |
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim) | |
except Exception as e: | |
print("t.shape:", t.shape, "x.shape", x.shape) | |
print("t:", t) | |
raise e | |
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists | |
if global_embed is not None: | |
global_embed = global_embed + timestep_embed | |
else: | |
global_embed = timestep_embed | |
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer | |
if self.global_cond_type == "prepend": | |
if prepend_inputs is None: | |
# Prepend inputs are just the global embed, and the mask is all ones | |
prepend_inputs = global_embed.unsqueeze(1) | |
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool) | |
else: | |
# Prepend inputs are the prepend conditioning + the global embed | |
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1) | |
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], | |
dim=1) | |
prepend_length = prepend_inputs.shape[1] | |
x = self.preprocess_conv(x) + x | |
x = rearrange(x, "b c t -> b t c") | |
extra_args = {} | |
if self.global_cond_type == "adaLN": | |
extra_args["global_cond"] = global_embed | |
if self.patch_size > 1: | |
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size) | |
if self.transformer_type == "x-transformers": | |
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, | |
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, | |
**extra_args, **kwargs) | |
elif self.transformer_type in ["continuous_transformer", "continuous_transformer_with_mask"]: | |
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, | |
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, | |
return_info=return_info, **extra_args, **kwargs) | |
if return_info: | |
output, info = output | |
elif self.transformer_type == "mm_transformer": | |
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, | |
**extra_args, **kwargs) | |
output = rearrange(output, "b t c -> b c t")[:, :, prepend_length:] | |
if self.patch_size > 1: | |
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size) | |
output = self.postprocess_conv(output) + output | |
if return_info: | |
return output, info | |
return output | |
def forward( | |
self, | |
x, | |
t, | |
cross_attn_cond=None, | |
cross_attn_cond_mask=None, | |
negative_cross_attn_cond=None, | |
negative_cross_attn_mask=None, | |
input_concat_cond=None, | |
global_embed=None, | |
negative_global_embed=None, | |
prepend_cond=None, | |
prepend_cond_mask=None, | |
cfg_scale=1.0, | |
cfg_dropout_prob=0.0, | |
causal=False, | |
scale_phi=0.0, | |
mask=None, | |
return_info=False, | |
**kwargs): | |
assert causal == False, "Causal mode is not supported for DiffusionTransformer" | |
if cross_attn_cond_mask is not None: | |
cross_attn_cond_mask = cross_attn_cond_mask.bool() | |
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention | |
if prepend_cond_mask is not None: | |
prepend_cond_mask = prepend_cond_mask.bool() | |
# CFG dropout | |
if cfg_dropout_prob > 0.0: | |
if cross_attn_cond is not None: | |
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device) | |
dropout_mask = torch.bernoulli( | |
torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to( | |
torch.bool) | |
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond) | |
if prepend_cond is not None: | |
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device) | |
dropout_mask = torch.bernoulli( | |
torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to( | |
torch.bool) | |
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond) | |
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None): | |
# Classifier-free guidance | |
# Concatenate conditioned and unconditioned inputs on the batch dimension | |
batch_inputs = torch.cat([x, x], dim=0) | |
batch_timestep = torch.cat([t, t], dim=0) | |
if global_embed is not None: | |
batch_global_cond = torch.cat([global_embed, global_embed], dim=0) | |
else: | |
batch_global_cond = None | |
if input_concat_cond is not None: | |
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0) | |
else: | |
batch_input_concat_cond = None | |
batch_cond = None | |
batch_cond_masks = None | |
# Handle CFG for cross-attention conditioning | |
if cross_attn_cond is not None: | |
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device) | |
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning | |
if negative_cross_attn_cond is not None: | |
# If there's a negative cross-attention mask, set the masked tokens to the null embed | |
if negative_cross_attn_mask is not None: | |
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2) | |
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond, | |
null_embed) | |
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0) | |
else: | |
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0) | |
if cross_attn_cond_mask is not None: | |
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0) | |
batch_prepend_cond = None | |
batch_prepend_cond_mask = None | |
if prepend_cond is not None: | |
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device) | |
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0) | |
if prepend_cond_mask is not None: | |
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0) | |
if mask is not None: | |
batch_masks = torch.cat([mask, mask], dim=0) | |
else: | |
batch_masks = None | |
batch_output = self._forward( | |
batch_inputs, | |
batch_timestep, | |
cross_attn_cond=batch_cond, | |
cross_attn_cond_mask=batch_cond_masks, | |
mask=batch_masks, | |
input_concat_cond=batch_input_concat_cond, | |
global_embed=batch_global_cond, | |
prepend_cond=batch_prepend_cond, | |
prepend_cond_mask=batch_prepend_cond_mask, | |
return_info=return_info, | |
**kwargs) | |
if return_info: | |
batch_output, info = batch_output | |
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0) | |
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale | |
# CFG Rescale | |
if scale_phi != 0.0: | |
cond_out_std = cond_output.std(dim=1, keepdim=True) | |
out_cfg_std = cfg_output.std(dim=1, keepdim=True) | |
output = scale_phi * (cfg_output * (cond_out_std / out_cfg_std)) + (1 - scale_phi) * cfg_output | |
else: | |
output = cfg_output | |
if return_info: | |
return output, info | |
return output | |
else: | |
return self._forward( | |
x, | |
t, | |
cross_attn_cond=cross_attn_cond, | |
cross_attn_cond_mask=cross_attn_cond_mask, | |
input_concat_cond=input_concat_cond, | |
global_embed=global_embed, | |
prepend_cond=prepend_cond, | |
prepend_cond_mask=prepend_cond_mask, | |
mask=mask, | |
return_info=return_info, | |
**kwargs | |
) | |