Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Whisper model.""" | |
import math | |
import os.path | |
import random | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import CrossEntropyLoss | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache | |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter | |
from dataclasses import dataclass | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
Seq2SeqLMOutput, | |
Seq2SeqModelOutput, | |
SequenceClassifierOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from .configuration_whisper import WhisperVQConfig | |
from .generation_whisper import WhisperGenerationMixin | |
if is_flash_attn_2_available(): | |
from transformers.modeling_flash_attention_utils import _flash_attention_forward | |
logger = logging.get_logger(__name__) | |
_HIDDEN_STATES_START_POSITION = 1 | |
_CONFIG_FOR_DOC = "WhisperConfig" | |
_CHECKPOINT_FOR_DOC = "openai/whisper-tiny" | |
class QuantizedBaseModelOutput(BaseModelOutput): | |
quantized_token_ids: Optional[torch.LongTensor] = None | |
def vector_quantize(inputs, codebook): | |
embedding_size = codebook.size(1) | |
inputs_flatten = inputs.reshape(-1, embedding_size) | |
codebook_sqr = torch.sum(codebook ** 2, dim=1) | |
inputs_sqr = torch.sum(inputs_flatten ** 2, dim=1, keepdim=True) | |
# Compute the distances to the codebook | |
distances = torch.addmm(codebook_sqr + inputs_sqr, | |
inputs_flatten, codebook.t(), alpha=-2.0, beta=1.0) | |
_, indices_flatten = torch.min(distances, dim=1) | |
codes_flatten = torch.index_select(codebook, dim=0, | |
index=indices_flatten) | |
codes = codes_flatten.view_as(inputs) | |
return codes, indices_flatten, distances | |
def mse_loss_with_mask(input, target, mask): | |
loss = torch.nn.functional.mse_loss(input, target, reduction='none') | |
loss = loss.mean(dim=-1) | |
loss = loss * mask | |
return loss.sum() / mask.sum() | |
class CausalConv1d(nn.Conv1d): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias=True, | |
**kwargs | |
): | |
super(CausalConv1d, self).__init__( | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=0, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
**kwargs | |
) | |
self.left_padding = dilation * (kernel_size - 1) | |
def forward(self, inp): | |
x = torch.nn.functional.pad(inp.unsqueeze(2), (self.left_padding, 0, 0, 0)).squeeze(2) | |
return super(CausalConv1d, self).forward(x) | |
# Copied from transformers.models.llama.modeling_llama._prepare_4d_causal_attention_mask_with_cache_position | |
def _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask: torch.Tensor, | |
sequence_length: int, | |
target_length: int, | |
dtype: torch.dtype, | |
device: torch.device, | |
min_dtype: float, | |
cache_position: torch.Tensor, | |
batch_size: int, | |
): | |
""" | |
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | |
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | |
Args: | |
attention_mask (`torch.Tensor`): | |
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | |
sequence_length (`int`): | |
The sequence length being processed. | |
target_length (`int`): | |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | |
dtype (`torch.dtype`): | |
The dtype to use for the 4D attention mask. | |
device (`torch.device`): | |
The device to plcae the 4D attention mask on. | |
min_dtype (`float`): | |
The minimum value representable with the dtype `dtype`. | |
cache_position (`torch.Tensor`): | |
Indices depicting the position of the input sequence tokens in the sequence. | |
batch_size (`torch.Tensor`): | |
Batch size. | |
""" | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
return causal_mask | |
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor: | |
"""Returns sinusoids for positional embedding""" | |
if channels % 2 != 0: | |
raise ValueError( | |
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." | |
) | |
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1) | |
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) | |
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1) | |
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1) | |
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("self.model.config.pad_token_id has to be defined.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.LongTensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
""" | |
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for | |
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on | |
CPU as part of the preprocessing during training. | |
Args: | |
shape: The shape for which to compute masks. This should be of a tuple of size 2 where | |
the first element is the batch size and the second element is the length of the axis to span. | |
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of | |
independently generated mask spans of length `mask_length` is computed by | |
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the | |
actual percentage will be smaller. | |
mask_length: size of the mask | |
min_masks: minimum number of masked spans | |
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of | |
each batch dimension. | |
""" | |
batch_size, sequence_length = shape | |
if mask_length < 1: | |
raise ValueError("`mask_length` has to be bigger than 0.") | |
if mask_length > sequence_length: | |
raise ValueError( | |
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" | |
f" and `sequence_length`: {sequence_length}`" | |
) | |
# epsilon is used for probabilistic rounding | |
epsilon = np.random.rand(1).item() | |
def compute_num_masked_span(input_length): | |
"""Given input length, compute how many spans should be masked""" | |
num_masked_span = int(mask_prob * input_length / mask_length + epsilon) | |
num_masked_span = max(num_masked_span, min_masks) | |
# make sure num masked span <= sequence_length | |
if num_masked_span * mask_length > sequence_length: | |
num_masked_span = sequence_length // mask_length | |
# make sure num_masked span is also <= input_length - (mask_length - 1) | |
if input_length - (mask_length - 1) < num_masked_span: | |
num_masked_span = max(input_length - (mask_length - 1), 0) | |
return num_masked_span | |
# compute number of masked spans in batch | |
input_lengths = ( | |
attention_mask.sum(-1).detach().tolist() | |
if attention_mask is not None | |
else [sequence_length for _ in range(batch_size)] | |
) | |
# SpecAugment mask to fill | |
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) | |
spec_aug_mask_idxs = [] | |
max_num_masked_span = compute_num_masked_span(sequence_length) | |
if max_num_masked_span == 0: | |
return spec_aug_mask | |
for input_length in input_lengths: | |
# compute num of masked spans for this input | |
num_masked_span = compute_num_masked_span(input_length) | |
# get random indices to mask | |
spec_aug_mask_idx = np.random.choice( | |
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False | |
) | |
# pick first sampled index that will serve as a dummy index to pad vector | |
# to ensure same dimension for all batches due to probabilistic rounding | |
# Picking first sample just pads those vectors twice. | |
if len(spec_aug_mask_idx) == 0: | |
# this case can only happen if `input_length` is strictly smaller then | |
# `sequence_length` in which case the last token has to be a padding | |
# token which we can use as a dummy mask id | |
dummy_mask_idx = sequence_length - 1 | |
else: | |
dummy_mask_idx = spec_aug_mask_idx[0] | |
spec_aug_mask_idx = np.concatenate( | |
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] | |
) | |
spec_aug_mask_idxs.append(spec_aug_mask_idx) | |
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) | |
# expand masked indices to masked spans | |
spec_aug_mask_idxs = np.broadcast_to( | |
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) | |
# add offset to the starting indexes so that indexes now create a span | |
offsets = np.arange(mask_length)[None, None, :] | |
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( | |
batch_size, max_num_masked_span * mask_length | |
) | |
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets | |
# ensure that we cannot have indices larger than sequence_length | |
if spec_aug_mask_idxs.max() > sequence_length - 1: | |
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 | |
# scatter indices to mask | |
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) | |
return spec_aug_mask | |
class WhisperPositionalEmbedding(nn.Embedding): | |
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): | |
super().__init__(num_positions, embedding_dim) | |
def forward(self, input_ids, past_key_values_length=0, position_ids=None): | |
if position_ids is None: | |
return self.weight[past_key_values_length: past_key_values_length + input_ids.shape[1]] | |
else: | |
return self.weight[position_ids] | |
class WhisperAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
layer_idx: Optional[int] = None, | |
config: Optional[WhisperVQConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim ** -0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
if layer_idx is None and is_decoder: | |
logger.warning_once( | |
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " | |
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.layer_idx = layer_idx | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
# Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_probs, value_states) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights, past_key_value | |
class WhisperFlashAttention2(WhisperAttention): | |
""" | |
Whisper flash attention module. This module inherits from `WhisperAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
if isinstance(past_key_value, StaticCache): | |
raise ValueError( | |
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " | |
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" | |
) | |
# WhisperFlashAttention2 attention does not support output_attentions | |
if output_attentions: | |
raise ValueError("WhisperFlashAttention2 attention does not support output_attentions") | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] | |
# We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = _flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
causal_mask, | |
tgt_len, | |
dropout=self.dropout, | |
is_causal=self.is_causal, | |
use_top_left_mask=self._flash_attn_uses_top_left_mask, | |
) | |
attn_output = attn_output.reshape(bsz, tgt_len, -1) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
class WhisperSdpaAttention(WhisperAttention): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions or layer_head_mask is not None: | |
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"WhisperModel is using WhisperSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states, | |
key_value_states=key_value_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len, _ = hidden_states.size() | |
# get query proj | |
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape(self.v_proj(current_states), -1, bsz) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False | |
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, | |
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
WHISPER_ATTENTION_CLASSES = { | |
"eager": WhisperAttention, | |
# "flash_attention_2": WhisperFlashAttention2, | |
"sdpa": WhisperSdpaAttention, | |
} | |
# Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper, MBART->WHISPER | |
class WhisperVQEncoderLayer(nn.Module): | |
def __init__(self, config: WhisperVQConfig, is_causal=False): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
config=config, | |
is_causal=is_causal | |
) | |
self.is_causal = is_causal | |
if self.is_causal: | |
assert isinstance(self.self_attn, WhisperSdpaAttention), "Causal attention is only supported for SDPA" | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) | |
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
layer_head_mask: torch.Tensor, | |
output_attentions: bool = False, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
hidden_states, attn_weights, _ = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask if not self.is_causal else None, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
if hidden_states.dtype == torch.float16 and ( | |
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() | |
): | |
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
class WhisperDecoderLayer(nn.Module): | |
def __init__(self, config: WhisperVQConfig, layer_idx: int = None): | |
super().__init__() | |
self.embed_dim = config.d_model | |
self.self_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
is_causal=True, | |
layer_idx=layer_idx, | |
config=config, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.encoder_attn = WHISPER_ATTENTION_CLASSES[config._attn_implementation]( | |
self.embed_dim, | |
config.decoder_attention_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
layer_idx=layer_idx, | |
config=config, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) | |
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
encoder_hidden_states (`torch.FloatTensor`): | |
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
size `(decoder_attention_heads,)`. | |
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 1 of present_key_value tuple | |
present_key_value = (present_key_value, cross_attn_present_key_value) | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class WhisperPreTrainedModel(PreTrainedModel): | |
config_class = WhisperVQConfig | |
base_model_prefix = "model" | |
main_input_name = "input_features" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
_supports_static_cache = True | |
def _init_weights(self, module): | |
std = self.config.init_std | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, WhisperVQEncoder): | |
with torch.no_grad(): | |
embed_positions = module.embed_positions.weight | |
embed_positions.copy_(sinusoids(*embed_positions.shape)) | |
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): | |
""" | |
Computes the output length of the convolutional layers | |
""" | |
input_lengths = (input_lengths - 1) // 2 + 1 | |
return input_lengths | |
WHISPER_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`WhisperConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
WHISPER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in | |
`[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary. | |
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If | |
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
If you want to change padding behavior, you should read | |
[`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART | |
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are | |
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and | |
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or | |
when `config.use_cache=True` | |
Two formats are allowed: | |
- An [`~cache_utils.EncoderDecoderCache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache | |
in the correct position and to infer the complete sequence length. | |
""" | |
WHISPER_ENCODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by | |
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via | |
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the | |
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a | |
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class WhisperVQEncoder(WhisperPreTrainedModel): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
[`WhisperEncoderLayer`]. | |
Args: | |
config: WhisperConfig | |
""" | |
def __init__(self, config: WhisperVQConfig): | |
super().__init__(config) | |
self.config = config | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.num_mel_bins = config.num_mel_bins | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
if config.encoder_causal_convolution: | |
conv_class = CausalConv1d | |
else: | |
conv_class = nn.Conv1d | |
self.conv1 = conv_class(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) | |
self.conv2 = conv_class(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) | |
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) | |
self.embed_positions.requires_grad_(False) | |
if config.quantize_encoder_only: | |
self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, | |
is_causal=config.encoder_causal_attention or config.quantize_causal_encoder) | |
for _ in range(config.quantize_position)]) | |
else: | |
self.layers = nn.ModuleList([WhisperVQEncoderLayer(config, is_causal=config.encoder_causal_attention or ( | |
config.quantize_causal_encoder and layer_id < config.quantize_position)) for layer_id in | |
range(config.encoder_layers)]) | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Parameters related to pooling layer | |
self.pooling_layer = None | |
# Parameters related to quantization layer | |
self.codebook = None | |
self.embed_positions2 = None | |
self.quantize_loss = None | |
self.num_active_codes = None | |
self.quantize_ema_count = 0 | |
# Save hiddens | |
self.save_hidden_dir = None | |
self.save_hidden_position = None | |
# Initialize weights and apply final processing | |
self.init_pooling_layer(config) | |
self.init_quantize_layer(config) | |
self.post_init() | |
def init_pooling_layer(self, config: WhisperVQConfig): | |
if config.pooling_kernel_size is not None: | |
if config.pooling_type == "max": | |
self.pooling_layer = nn.MaxPool1d(kernel_size=config.pooling_kernel_size) | |
elif config.pooling_type == "avg": | |
self.pooling_layer = nn.AvgPool1d(kernel_size=config.pooling_kernel_size) | |
else: | |
raise NotImplementedError(f"Pooling type {config.pooling_type} not implemented") | |
def init_quantize_layer(self, config: WhisperVQConfig, quantize_load_codebook=None): | |
if config.quantize_vocab_size is not None: | |
if config.pooling_position is not None: | |
assert config.quantize_position >= config.pooling_position | |
self.codebook = nn.Embedding(config.quantize_vocab_size, self.config.d_model) | |
if quantize_load_codebook is not None: | |
init_codes = np.load(quantize_load_codebook) | |
self.codebook.weight.data.copy_(torch.from_numpy(init_codes)) | |
max_source_positions = self.max_source_positions | |
if config.pooling_kernel_size is not None: | |
max_source_positions = math.ceil(max_source_positions / self.config.pooling_kernel_size) | |
self.embed_positions2 = nn.Embedding(max_source_positions, self.config.d_model) | |
self.embed_positions2.weight.data.copy_(self.embed_positions.weight.data[:max_source_positions]) | |
if config.quantize_ema_decay is not None: | |
self.codebook.weight.requires_grad = False | |
self.register_buffer("ema_count", torch.ones(config.quantize_vocab_size, dtype=torch.float)) | |
self.register_buffer("ema_weight", self.codebook.weight.data.clone().float()) | |
def _freeze_parameters(self): | |
for param in self.parameters(): | |
param.requires_grad = False | |
self._requires_grad = False | |
def get_input_embeddings(self) -> nn.Module: | |
return self.conv1 | |
def set_input_embeddings(self, value: nn.Module): | |
self.conv1 = value | |
def get_block_causal_attention_mask(self, attention_mask, block_size=50): | |
dtype = self.dtype | |
batch_size, seq_length = attention_mask.shape | |
causal_mask = torch.torch.tril( | |
torch.ones(1, seq_length, seq_length, dtype=torch.bool, device=attention_mask.device)) | |
block_square_mask = [] | |
for start in range(0, seq_length, block_size): | |
end = min(start + block_size, seq_length) | |
length = end - start | |
block_square_mask.append(causal_mask.new_ones((length, length))) | |
block_square_mask = torch.block_diag(*block_square_mask) | |
block_causal_mask = causal_mask | block_square_mask | |
block_causal_mask = block_causal_mask & attention_mask[:, None, :] | |
block_causal_mask = block_causal_mask.to(dtype=dtype) # fp16 compatibility | |
block_causal_mask = (1.0 - block_causal_mask) * torch.finfo(dtype).min | |
block_causal_mask = block_causal_mask.unsqueeze(1) | |
return block_causal_mask | |
def forward( | |
self, | |
input_features, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
quantized_token_ids=None | |
): | |
r""" | |
Args: | |
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): | |
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be | |
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a | |
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into | |
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding | |
and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] | |
attention_mask (`torch.Tensor`)`, *optional*): | |
Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, | |
but it is not used. By default the silence in the input log mel spectrogram are ignored. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
# expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] | |
# if input_features.shape[-1] != expected_seq_length: | |
# raise ValueError( | |
# f"Whisper expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." | |
# ) | |
batch_size, feature_size, seq_length = input_features.shape | |
seq_length = seq_length // (self.conv1.stride[0] * self.conv2.stride[0]) | |
attention_mask = attention_mask[:, :: self.conv1.stride[0] * self.conv2.stride[0]] | |
if self.config.quantize_causal_block_size is not None: | |
extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, | |
block_size=self.config.quantize_causal_block_size) | |
else: | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, (batch_size, seq_length)) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) | |
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) | |
inputs_embeds = inputs_embeds.permute(0, 2, 1) | |
embed_pos = self.embed_positions.weight | |
hidden_states = inputs_embeds + embed_pos[:seq_length] | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
assert attention_mask.shape[-1] == hidden_states.shape[1] | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
assert head_mask.size()[0] == ( | |
len(self.layers) | |
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
to_drop = False | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: # skip the layer | |
to_drop = True | |
if to_drop: | |
layer_outputs = (None, None) | |
else: | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
extended_attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
extended_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if idx + 1 == self.config.pooling_position and self.config.pooling_kernel_size is not None: | |
hidden_states = hidden_states.permute(0, 2, 1) | |
if hidden_states.shape[-1] % self.config.pooling_kernel_size != 0: | |
hidden_states = torch.nn.functional.pad(hidden_states, ( | |
0, self.config.pooling_kernel_size - hidden_states.shape[-1] % self.config.pooling_kernel_size)) | |
hidden_states = self.pooling_layer(hidden_states).permute(0, 2, 1) | |
attention_mask = attention_mask[:, ::self.config.pooling_kernel_size] | |
if self.config.quantize_causal_block_size is not None: | |
extended_attention_mask = self.get_block_causal_attention_mask(attention_mask, block_size=self.config.quantize_causal_block_size // self.config.pooling_kernel_size) | |
else: | |
extended_attention_mask = self.get_extended_attention_mask(attention_mask, ( | |
batch_size, seq_length // self.config.pooling_kernel_size)) | |
if idx + 1 == self.config.quantize_position and self.config.quantize_vocab_size is not None: | |
if quantized_token_ids is not None: | |
hidden_states = self.codebook(quantized_token_ids) | |
else: | |
hidden_quantized, indices_flat, distances = vector_quantize(hidden_states, self.codebook.weight) | |
quantized_token_ids = indices_flat.reshape(batch_size, hidden_quantized.shape[1]) | |
if self.training: | |
encodings = torch.nn.functional.one_hot(indices_flat, self.config.quantize_vocab_size).float() | |
encodings = encodings * attention_mask.reshape(-1, 1) | |
n = torch.sum(encodings, dim=0) | |
torch.distributed.all_reduce(n, op=torch.distributed.ReduceOp.SUM) | |
self.num_active_codes = n.nonzero().shape[0] | |
if self.config.quantize_ema_decay: | |
hidden_flat = hidden_states.detach().float().reshape(-1, hidden_states.shape[-1]) | |
with torch.autocast(device_type='cuda', dtype=torch.float32): | |
dw = torch.matmul(encodings.t(), hidden_flat) | |
torch.distributed.all_reduce(dw, op=torch.distributed.ReduceOp.SUM) | |
self.ema_count = self.ema_count * self.config.quantize_ema_decay + ( | |
1 - self.config.quantize_ema_decay) * n | |
total_count = torch.sum(self.ema_count) | |
self.ema_count = (self.ema_count + 1e-5) / ( | |
total_count + self.config.quantize_vocab_size * 1e-5) * total_count | |
self.ema_weight = self.ema_weight * self.config.quantize_ema_decay + ( | |
1 - self.config.quantize_ema_decay) * dw | |
self.codebook.weight.data = self.ema_weight / self.ema_count.unsqueeze(1) | |
self.quantize_loss = self.config.quantize_loss_scale * self.config.quantize_commit_coefficient * mse_loss_with_mask( | |
hidden_states, hidden_quantized.detach(), attention_mask) | |
self.quantize_ema_count += 1 | |
if self.config.quantize_restart_interval is not None and self.quantize_ema_count % self.config.quantize_restart_interval == 0: | |
rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size() | |
segment_vocab_size = self.config.quantize_vocab_size // world_size | |
start_idx = segment_vocab_size * rank | |
ema_count_segment = self.ema_count[start_idx: start_idx + segment_vocab_size] | |
threshold = 1 * ( | |
self.config.quantize_ema_decay ** self.config.quantize_restart_interval) | |
update_indices = (ema_count_segment < threshold).nonzero()[:, 0] + start_idx | |
num_update = update_indices.shape[0] | |
mask_flat = attention_mask.reshape(-1) > 0 | |
hidden_selected = hidden_flat[mask_flat] | |
hidden_update = hidden_selected[random.sample(range(len(hidden_selected)), num_update)] | |
num_update = torch.as_tensor([num_update], dtype=torch.long, | |
device=hidden_states.device) | |
num_update_list = [torch.as_tensor([0], dtype=torch.long, device=hidden_states.device) | |
for _ | |
in range(world_size)] | |
torch.distributed.all_gather(num_update_list, num_update) | |
update_indices_list = [ | |
torch.zeros(num.item(), dtype=torch.long, device=hidden_states.device) for num in | |
num_update_list] | |
torch.distributed.all_gather(update_indices_list, update_indices) | |
update_indices = torch.cat(update_indices_list) | |
hidden_update_list = [ | |
torch.zeros(num.item(), hidden_flat.shape[-1], dtype=hidden_update.dtype, | |
device=hidden_states.device) for num in num_update_list] | |
torch.distributed.all_gather(hidden_update_list, hidden_update) | |
hidden_update = torch.cat(hidden_update_list) | |
self.codebook.weight.data[update_indices] = hidden_update | |
self.ema_count[update_indices] = 1 | |
self.ema_weight[update_indices] = hidden_update | |
if torch.distributed.get_rank() == 0: | |
print(f"restart {len(update_indices)} tokens") | |
else: | |
loss = self.config.quantize_loss_scale * ( | |
self.config.quantize_commit_coefficient * mse_loss_with_mask(hidden_states, | |
hidden_quantized.detach(), | |
attention_mask) + mse_loss_with_mask( | |
hidden_quantized, hidden_states.detach(), attention_mask)) | |
self.quantize_loss = loss | |
hidden_states = hidden_states + (hidden_quantized - hidden_states).detach() | |
else: | |
hidden_states = hidden_quantized | |
hidden_states = hidden_states + self.embed_positions2.weight[:hidden_states.shape[1]] | |
if idx + 1 == self.save_hidden_position: | |
import numpy as np | |
import uuid | |
to_save = [] | |
for batch_idx, hidden_state in enumerate(hidden_states): | |
for seq_idx, hidden in enumerate(hidden_state): | |
if attention_mask[batch_idx, seq_idx]: | |
to_save.append(hidden.detach().cpu().numpy()) | |
np.save(os.path.join(self.save_hidden_dir, f"{str(uuid.uuid4())}.npy"), to_save) | |
if not self.config.quantize_encoder_only: | |
hidden_states = self.layer_norm(hidden_states) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return QuantizedBaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, | |
quantized_token_ids=quantized_token_ids, | |
) | |
class WhisperVQDecoder(WhisperPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] | |
Args: | |
config: WhisperConfig | |
""" | |
main_input_name = "input_ids" | |
def __init__(self, config: WhisperVQConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.decoder_layerdrop | |
self.padding_idx = config.pad_token_id | |
self.max_target_positions = config.max_target_positions | |
self.max_source_positions = config.max_source_positions | |
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 | |
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) | |
self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) | |
self.layers = nn.ModuleList( | |
[WhisperDecoderLayer(config, layer_idx) for layer_idx in range(config.decoder_layers)] | |
) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
self._use_sdpa = config._attn_implementation == "sdpa" | |
self.layer_norm = nn.LayerNorm(config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
position_ids=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
cache_position=None, | |
): | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. | |
Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
of the decoder.] | |
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | |
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention | |
on hidden heads. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are | |
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and | |
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or | |
when `config.use_cache=True` | |
Two formats are allowed: | |
- An [`~cache_utils.EncoderDecoderCache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those | |
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of | |
all `decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of | |
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing | |
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more | |
control over how to convert `input_ids` indices into associated vectors than the model's internal | |
embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the | |
cache in the correct position and to infer the complete sequence length. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
assert encoder_attention_mask.shape[-1] == encoder_hidden_states.shape[1] | |
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | |
return_legacy_cache = False | |
return_self_attention_cache = False | |
if use_cache or past_key_values is not None: | |
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): | |
return_self_attention_cache = True | |
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) | |
elif not isinstance(past_key_values, EncoderDecoderCache): | |
return_legacy_cache = True | |
logger.warning_once( | |
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. " | |
"You should pass an instance of `EncoderDecoderCache` instead, e.g. " | |
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." | |
) | |
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) | |
past_key_values_length = 0 | |
if cache_position is not None: | |
past_key_values_length = cache_position[0] | |
elif past_key_values is not None: | |
past_key_values_length = past_key_values.get_seq_length() | |
if cache_position is None: | |
cache_position = torch.arange( | |
past_key_values_length, past_key_values_length + input_shape[1], device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
# embed positions | |
if input_ids is not None: | |
positions = self.embed_positions( | |
input_ids, past_key_values_length=past_key_values_length, position_ids=position_ids | |
) | |
else: | |
positions = self.embed_positions( | |
inputs_embeds, past_key_values_length=past_key_values_length, position_ids=position_ids | |
) | |
hidden_states = inputs_embeds + positions.to(inputs_embeds.device) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
causal_mask = self._update_causal_mask( | |
attention_mask, | |
inputs_embeds, | |
cache_position, | |
past_key_values.self_attention_cache if past_key_values is not None else None, | |
output_attentions, | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
assert attn_mask.size()[0] == (len(self.layers)), ( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {head_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
if self.training: | |
dropout_probability = torch.rand([]) | |
if dropout_probability < self.layerdrop: | |
continue | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.__call__, | |
hidden_states, | |
causal_mask, | |
encoder_hidden_states, | |
encoder_extended_attention_mask, # encoder attention mask | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, # past_key_value | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_extended_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_values if use_cache else None, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = past_key_values if use_cache else None | |
if return_self_attention_cache: | |
next_cache = past_key_values.self_attention_cache | |
if return_legacy_cache: | |
next_cache = past_key_values.to_legacy_cache() | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D). | |
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
attention_mask, | |
sequence_length=sequence_length, | |
target_length=target_length, | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=input_tensor.shape[0], | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
class WhisperVQModel(WhisperPreTrainedModel): | |
def __init__(self, config: WhisperVQConfig): | |
super().__init__(config) | |
self.encoder = WhisperVQEncoder(config) | |
self.decoder = WhisperVQDecoder(config) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.decoder.embed_tokens = value | |
def get_encoder(self): | |
return self.encoder | |
def get_decoder(self): | |
return self.decoder | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. | |
""" | |
self.encoder._freeze_parameters() | |
def _mask_input_features( | |
self, | |
input_features: torch.FloatTensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
): | |
""" | |
Masks extracted features along time axis and/or along feature axis according to | |
[SpecAugment](https://arxiv.org/abs/1904.08779). | |
""" | |
# `config.apply_spec_augment` can set masking to False | |
if not getattr(self.config, "apply_spec_augment", True): | |
return input_features | |
# generate indices & apply SpecAugment along time axis | |
batch_size, hidden_size, sequence_length = input_features.size() | |
if self.config.mask_time_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along time axis | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
mask_prob=self.config.mask_time_prob, | |
mask_length=self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=self.config.mask_time_min_masks, | |
) | |
mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) | |
mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) | |
input_features[mask_time_indices] = 0 | |
if self.config.mask_feature_prob > 0 and self.training: | |
# generate indices & apply SpecAugment along feature axis | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
mask_prob=self.config.mask_feature_prob, | |
mask_length=self.config.mask_feature_length, | |
min_masks=self.config.mask_feature_min_masks, | |
) | |
mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) | |
input_features[mask_feature_indices] = 0 | |
return input_features | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
quantized_token_ids: Optional[torch.LongTensor] = None | |
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: | |
r""" | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, WhisperModel | |
>>> from datasets import load_dataset | |
>>> model = WhisperVQModel.from_pretrained("openai/whisper-base") | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") | |
>>> input_features = inputs.input_features | |
>>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id | |
>>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state | |
>>> list(last_hidden_state.shape) | |
[1, 2, 512] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
input_features = self._mask_input_features(input_features, attention_mask=attention_mask) | |
encoder_outputs = self.encoder( | |
input_features, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
quantized_token_ids=quantized_token_ids | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
attention_mask = attention_mask[:, ::self.encoder.conv1.stride[0] * self.encoder.conv2.stride[0]] | |
if self.encoder.config.pooling_kernel_size is not None: | |
attention_mask = attention_mask[:, ::self.encoder.config.pooling_kernel_size] | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_attention_mask=attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
position_ids=decoder_position_ids, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class WhisperVQForConditionalGeneration(WhisperGenerationMixin, WhisperPreTrainedModel): | |
base_model_prefix = "model" | |
_tied_weights_keys = ["proj_out.weight"] | |
def __init__(self, config: WhisperVQConfig): | |
super().__init__(config) | |
self.model = WhisperVQModel(config) | |
self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) | |
self.quantize_loss = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_encoder(self): | |
return self.model.get_encoder() | |
def get_decoder(self): | |
return self.model.get_decoder() | |
def get_output_embeddings(self): | |
return self.proj_out | |
def set_output_embeddings(self, new_embeddings): | |
self.proj_out = new_embeddings | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.get_input_embeddings() | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. | |
""" | |
self.model.encoder._freeze_parameters() | |
def forward( | |
self, | |
input_features: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.LongTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
decoder_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, | |
decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, | |
decoder_position_ids: Optional[Tuple[torch.LongTensor]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
quantized_token_ids: Optional[torch.LongTensor] = None | |
) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` | |
or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is | |
only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoProcessor, WhisperForConditionalGeneration | |
>>> from datasets import load_dataset | |
>>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") | |
>>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") | |
>>> input_features = inputs.input_features | |
>>> generated_ids = model.generate(inputs=input_features) | |
>>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
>>> transcription | |
' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if labels is not None: | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
outputs = self.model( | |
input_features, | |
attention_mask=attention_mask, | |
decoder_input_ids=decoder_input_ids, | |
encoder_outputs=encoder_outputs, | |
decoder_attention_mask=decoder_attention_mask, | |
head_mask=head_mask, | |
decoder_head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
decoder_inputs_embeds=decoder_inputs_embeds, | |
decoder_position_ids=decoder_position_ids, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
quantized_token_ids=quantized_token_ids | |
) | |
lm_logits = self.proj_out(outputs[0]) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# move labels to correct device to enable PP | |
labels = labels.to(lm_logits.device) | |
loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) | |
if self.training and self.model.encoder.quantize_loss is not None: | |
loss = loss + self.model.encoder.quantize_loss | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return Seq2SeqLMOutput( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
decoder_hidden_states=outputs.decoder_hidden_states, | |
decoder_attentions=outputs.decoder_attentions, | |
cross_attentions=outputs.cross_attentions, | |
encoder_last_hidden_state=outputs.encoder_last_hidden_state, | |
encoder_hidden_states=outputs.encoder_hidden_states, | |
encoder_attentions=outputs.encoder_attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
use_cache=None, | |
encoder_outputs=None, | |
attention_mask=None, | |
decoder_attention_mask=None, | |
cache_position=None, | |
quantized_token_ids=None, | |
**kwargs, | |
): | |
decoder_position_ids = None | |
if decoder_attention_mask is not None: | |
decoder_position_ids = (decoder_attention_mask.cumsum(-1) - 1).clamp(min=0) | |
past_length = 0 | |
if past_key_values is not None: | |
if isinstance(past_key_values, EncoderDecoderCache): | |
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
else: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if decoder_input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = decoder_input_ids.shape[1] - 1 | |
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | |
if decoder_position_ids is not None: | |
decoder_position_ids = decoder_position_ids[:, remove_prefix_length:] | |
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture. | |
decoder_position_ids = decoder_position_ids.clone(memory_format=torch.contiguous_format) | |
if cache_position is None: | |
cache_position = torch.arange( | |
past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device | |
) | |
elif use_cache: | |
cache_position = cache_position[-decoder_input_ids.shape[1]:] | |
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise | |
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114 | |
decoder_input_ids = decoder_input_ids.contiguous() | |
if ( | |
isinstance(past_key_values, EncoderDecoderCache) | |
and ( | |
isinstance(past_key_values.self_attention_cache, StaticCache) | |
or isinstance(past_key_values.cross_attention_cache, StaticCache) | |
) | |
and decoder_attention_mask is not None | |
and decoder_attention_mask.ndim == 2 | |
): | |
batch_size, sequence_length = decoder_input_ids.shape | |
device = decoder_input_ids.device | |
dtype = self.proj_out.weight.dtype | |
min_dtype = torch.finfo(dtype).min | |
decoder_attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | |
decoder_attention_mask, | |
sequence_length=sequence_length, | |
target_length=past_key_values.self_attention_cache.get_max_length(), | |
dtype=dtype, | |
device=device, | |
min_dtype=min_dtype, | |
cache_position=cache_position, | |
batch_size=batch_size, | |
) | |
return { | |
"encoder_outputs": encoder_outputs, | |
"attention_mask": attention_mask, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids, | |
"use_cache": use_cache, | |
"decoder_attention_mask": decoder_attention_mask, | |
"decoder_position_ids": decoder_position_ids, | |
"cache_position": cache_position, | |
"quantized_token_ids": quantized_token_ids | |
} | |
def _retrieve_init_tokens(self, input_features, batch_size, generation_config, config, num_segment_frames, kwargs): | |
if self.config.skip_language_detection: | |
return torch.as_tensor([[generation_config.decoder_start_token_id] for _ in range(batch_size)], | |
dtype=torch.long, device=self.device).expand(batch_size, -1) | |
else: | |
return super()._retrieve_init_tokens(input_features, batch_size, generation_config, config, | |
num_segment_frames, kwargs) | |
class WhisperDecoderWrapper(WhisperPreTrainedModel): | |
""" | |
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is | |
used in combination with the [`EncoderDecoderModel`] framework. | |
""" | |
def __init__(self, config): | |
super().__init__(config) | |
config.is_encoder_decoder = False | |
self.decoder = WhisperVQDecoder(config) | |
def get_input_embeddings(self): | |
return self.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.decoder.embed_tokens = value | |
def forward(self, *args, **kwargs): | |
return self.decoder(*args, **kwargs) | |
class WhisperForCausalLM(WhisperPreTrainedModel): | |
_tied_weights_keys = ["proj_out.weight"] | |
main_input_name = "input_ids" | |
def __init__(self, config): | |
super().__init__(config) | |
config.is_encoder_decoder = False | |
self.model = WhisperDecoderWrapper(config) | |
self.proj_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_output_embeddings(self): | |
return self.proj_out | |
def set_output_embeddings(self, new_embeddings): | |
self.proj_out = new_embeddings | |
def get_input_embeddings(self) -> nn.Module: | |
return self.model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.model.set_input_embeddings(value) | |
def set_decoder(self, decoder): | |
self.model.decoder = decoder | |
def get_decoder(self): | |
return self.model.decoder | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: | |
r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you | |
provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
encoder_outputs (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention | |
if the model is configured as a decoder. | |
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | |
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of | |
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional | |
tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains | |
pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If | |
`past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache | |
in the correct position and to infer the complete sequence length. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import WhisperForCausalLM, WhisperForConditionalGeneration, WhisperProcessor | |
>>> import torch | |
>>> from datasets import load_dataset | |
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large-v2") | |
>>> model = WhisperVQForConditionalGeneration.from_pretrained("openai/whisper-large-v2") | |
>>> assistant_model = WhisperForCausalLM.from_pretrained("distil-whisper/distil-large-v2") | |
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") | |
>>> sample = ds[0]["audio"] | |
>>> input_features = processor( | |
... sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt" | |
... ).input_features | |
>>> predicted_ids = model.generate(input_features, assistant_model=assistant_model) | |
>>> # decode token ids to text | |
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
>>> transcription | |
' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.' | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# If the user passed a tuple or `BaseModelOutput` for encoder_outputs, we extract only the hidden states | |
if isinstance(encoder_outputs, (BaseModelOutput, tuple, list)): | |
encoder_outputs = encoder_outputs[0] | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_outputs, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
logits = self.proj_out(outputs[0]) | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
use_cache=None, | |
encoder_outputs=None, | |
attention_mask=None, | |
cache_position=None, | |
**kwargs, | |
): | |
past_length = 0 | |
if past_key_values is not None: | |
if isinstance(past_key_values, (Cache, EncoderDecoderCache)): | |
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
else: | |
past_length = past_key_values[0][0].shape[2] | |
# Some generation methods already pass only the last input ID | |
if input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = input_ids.shape[1] - 1 | |
input_ids = input_ids[:, remove_prefix_length:] | |
if cache_position is None: | |
cache_position = torch.arange(past_length, past_length + input_ids.shape[1], device=input_ids.device) | |
elif use_cache: | |
cache_position = cache_position[-input_ids.shape[1]:] | |
return { | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"input_ids": input_ids, | |
"use_cache": use_cache, | |
"attention_mask": attention_mask, | |
"cache_position": cache_position, | |
} | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
class WhisperForAudioClassification(WhisperPreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.encoder = WhisperVQEncoder(config) | |
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings | |
if config.use_weighted_layer_sum: | |
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) | |
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) | |
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def freeze_encoder(self): | |
""" | |
Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will | |
not be updated during training. Only the projection layers and classification head will be updated. | |
""" | |
self.encoder._freeze_parameters() | |
def get_input_embeddings(self) -> nn.Module: | |
return self.encoder.get_input_embeddings() | |
def set_input_embeddings(self, value: nn.Module): | |
self.encoder.set_input_embeddings(value) | |
def forward( | |
self, | |
input_features: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
labels: Optional[torch.LongTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
Returns: | |
Example: | |
```python | |
>>> import torch | |
>>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification | |
>>> from datasets import load_dataset | |
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
>>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") | |
>>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) | |
>>> sample = next(iter(ds)) | |
>>> inputs = feature_extractor( | |
... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" | |
... ) | |
>>> input_features = inputs.input_features | |
>>> with torch.no_grad(): | |
... logits = model(input_features).logits | |
>>> predicted_class_ids = torch.argmax(logits).item() | |
>>> predicted_label = model.config.id2label[predicted_class_ids] | |
>>> predicted_label | |
'Afrikaans' | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
if self.config.use_weighted_layer_sum: | |
output_hidden_states = True | |
elif output_hidden_states is None: | |
output_hidden_states = self.config.output_hidden_states | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_features, | |
head_mask=head_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if self.config.use_weighted_layer_sum: | |
hidden_states = encoder_outputs[_HIDDEN_STATES_START_POSITION] | |
hidden_states = torch.stack(hidden_states, dim=1) | |
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) | |
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) | |
else: | |
hidden_states = encoder_outputs[0] | |
hidden_states = self.projector(hidden_states) | |
pooled_output = hidden_states.mean(dim=1) | |
logits = self.classifier(pooled_output) | |
loss = None | |
if labels is not None: | |
loss_fct = CrossEntropyLoss() | |
# move labels to correct device to enable PP | |
labels = labels.to(logits.device) | |
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + encoder_outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutput( | |
loss=loss, | |
logits=logits, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |