Spaces:
Paused
Paused
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py | |
import os | |
import warnings | |
from torch import Tensor | |
from torch import nn | |
XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None | |
try: | |
if XFORMERS_ENABLED: | |
from xformers.ops import memory_efficient_attention, unbind | |
XFORMERS_AVAILABLE = True | |
warnings.warn("xFormers is available (Attention)") | |
else: | |
warnings.warn("xFormers is disabled (Attention)") | |
raise ImportError | |
except ImportError: | |
XFORMERS_AVAILABLE = False | |
warnings.warn("xFormers is not available (Attention)") | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: Tensor) -> Tensor: | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MemEffAttention(Attention): | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
if not XFORMERS_AVAILABLE: | |
if attn_bias is not None: | |
raise AssertionError("xFormers is required for using nested tensors") | |
return super().forward(x) | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = unbind(qkv, 2) | |
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | |
x = x.reshape([B, N, C]) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
dim_q: int, | |
dim_k: int, | |
dim_v: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.to_q = nn.Linear(dim_q, dim, bias=qkv_bias) | |
self.to_k = nn.Linear(dim_k, dim, bias=qkv_bias) | |
self.to_v = nn.Linear(dim_v, dim, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: | |
# q: [B, N, Cq] | |
# k: [B, M, Ck] | |
# v: [B, M, Cv] | |
# return: [B, N, C] | |
B, N, _ = q.shape | |
M = k.shape[1] | |
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, N, C/nh] | |
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh] | |
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads).permute(0, 2, 1, 3) # [B, nh, M, C/nh] | |
attn = q @ k.transpose(-2, -1) # [B, nh, N, M] | |
attn = attn.softmax(dim=-1) # [B, nh, N, M] | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) # [B, nh, N, M] @ [B, nh, M, C/nh] --> [B, nh, N, C/nh] --> [B, N, nh, C/nh] --> [B, N, C] | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MemEffCrossAttention(CrossAttention): | |
def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_bias=None) -> Tensor: | |
if not XFORMERS_AVAILABLE: | |
if attn_bias is not None: | |
raise AssertionError("xFormers is required for using nested tensors") | |
return super().forward(x) | |
B, N, _ = q.shape | |
M = k.shape[1] | |
q = self.scale * self.to_q(q).reshape(B, N, self.num_heads, self.dim // self.num_heads) # [B, N, nh, C/nh] | |
k = self.to_k(k).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh] | |
v = self.to_v(v).reshape(B, M, self.num_heads, self.dim // self.num_heads) # [B, M, nh, C/nh] | |
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | |
x = x.reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |