File size: 30,835 Bytes
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
964edba
 
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
 
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
964edba
2db0e1a
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964edba
2db0e1a
 
 
964edba
2db0e1a
 
 
 
 
 
 
 
 
 
 
 
 
964edba
 
 
2db0e1a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import gradio as gr
import torch
import base64
import io
from PIL import Image
from transformers import (
    LlavaNextProcessor, LlavaNextForConditionalGeneration,
    T5EncoderModel, T5Tokenizer
)
from transformers import (
    AutoProcessor, AutoModelForCausalLM, GenerationConfig,
    T5EncoderModel, T5Tokenizer
)
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FlowMatchHeunDiscreteScheduler, FluxPipeline
from tordi.diffusion.pipelines.onediffusion import OneDiffusionPipeline
from tordi.models.denoiser.nextdit import NextDiT
from tordi.dataset.utils import get_closest_ratio, ASPECT_RATIO_512
from typing import List, Optional

# Import additional libraries
import matplotlib
import numpy as np
import cv2

# Task-specific tokens
TASK2SPECIAL_TOKENS = {
    "text2image": "[[text2image]]",
    "deblurring": "[[deblurring]]",
    "inpainting": "[[image_inpainting]]",
    "canny": "[[canny2image]]",
    "super_resolution": "[[super_resolution]]",
    "depth2image": "[[depth2image]]",
    "hed2image": "[[hed2img]]",
    "pose2image": "[[pose2image]]",
    "semanticmap2image": "[[semanticmap2image]]",
    "boundingbox2image": "[[boundingbox2image]]",
    "image_editing": "[[image_editing]]",
    "faceid": "[[faceid]]",
    "multiview": "[[multiview]]",
    "subject_driven": "[[subject_driven]]"
}
NEGATIVE_PROMPT = "monochrome, greyscale, low-res, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"


class LlavaCaptionProcessor:
    def __init__(self):
        model_name = "llava-hf/llama3-llava-next-8b-hf"
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        dtype = torch.float16 if torch.cuda.is_available() else torch.float32
        self.processor = LlavaNextProcessor.from_pretrained(model_name)
        self.model = LlavaNextForConditionalGeneration.from_pretrained(
            model_name, torch_dtype=dtype, low_cpu_mem_usage=True
        ).to(device)
        self.SPECIAL_TOKENS = "assistant\n\n\n"

    def generate_response(self, image: Image.Image, msg: str) -> str:
        conversation = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": msg}]}]
        with torch.no_grad():
            prompt = self.processor.apply_chat_template(conversation, add_generation_prompt=True)
            inputs = self.processor(prompt, image, return_tensors="pt").to(self.model.device)
            output = self.model.generate(**inputs, max_new_tokens=250)
            response = self.processor.decode(output[0], skip_special_tokens=True)
        return response.split(msg)[-1].strip()[len(self.SPECIAL_TOKENS):]

    def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
        if msg is None:
            msg = f"Describe the contents of the photo in 150 words or fewer."
        try:
            return [self.generate_response(img, msg) for img in images]
        except Exception as e:
            print(f"Error in process: {str(e)}")
            raise


class MolmoCaptionProcessor:
    def __init__(self):
        pretrained_model_name = 'allenai/Molmo-7B-O-0924'
        self.processor = AutoProcessor.from_pretrained(
            pretrained_model_name,
            trust_remote_code=True,
            torch_dtype='auto',
            device_map='auto'
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            pretrained_model_name,
            trust_remote_code=True,
            torch_dtype='auto',
            device_map='auto'
        )

    def generate_response(self, image: Image.Image, msg: str) -> str:
        inputs = self.processor.process(
            images=[image],
            text=msg
        )
        # Move inputs to the correct device and make a batch of size 1
        inputs = {k: v.to(self.model.device).unsqueeze(0) for k, v in inputs.items()}
        
        # Generate output
        output = self.model.generate_from_batch(
            inputs,
            GenerationConfig(max_new_tokens=250, stop_strings="<|endoftext|>"),
            tokenizer=self.processor.tokenizer
        )
        
        # Only get generated tokens and decode them to text
        generated_tokens = output[0, inputs['input_ids'].size(1):]
        return self.processor.tokenizer.decode(generated_tokens, skip_special_tokens=True).strip()


    def process(self, images: List[Image.Image], msg: str = None) -> List[str]:
        if msg is None:
            msg = f"Describe the contents of the photo in 150 words or fewer."
        try:
            return [self.generate_response(img, msg) for img in images]
        except Exception as e:
            print(f"Error in process: {str(e)}")
            raise

def initialize_models():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = NextDiT.from_pretrained(
        # "/data/input/duongl/finetuning_distributed_multiview_16x8_scalerays_dl3dv_dynamic_shift_softcap_editing/checkpoint-98000",
        # "/data/input/duongl/data/input/duongl/finetuning_distributed_multiview_16x8_scalerays_dl3dv_dynamic_shift_softcap_trainingWithFluxScheduler/checkpoint-10000/",        # "lehduong/OneDiffusion",
        "lehduong/OneDiffusion",
        subfolder="transformer",
        torch_dtype=torch.float32,
    ).to(device)
    vae = AutoencoderKL.from_pretrained("lehduong/OneDiffusion", subfolder="vae").to(device)
    text_encoder = T5EncoderModel.from_pretrained("lehduong/OneDiffusion", subfolder="text_encoder", torch_dtype=torch.float16).to(device)
    tokenizer = T5Tokenizer.from_pretrained("lehduong/OneDiffusion", subfolder="tokenizer")
    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        # "stabilityai/stable-diffusion-3-medium-diffusers",
        # "black-forest-labs/FLUX.1-dev",
        "lehduong/OneDiffusion",
        subfolder="scheduler"
    )
    # scheduler = FlowMatchEulerDiscreteScheduler(
    #     base_image_seq_len=256,
    #     base_shift=0.5,
    #     max_image_seq_len=4096,
    #     max_shift=1.16,
    #     num_train_timesteps=1000,
    #     shift=3.0,
    #     use_dynamic_shifting=True
    # )
    pipeline = OneDiffusionPipeline(
        vae=vae, text_encoder=text_encoder, transformer=model, tokenizer=tokenizer, scheduler=scheduler
    ).to(torch.bfloat16)
    molmo_caption_processor = MolmoCaptionProcessor() # LlavaCaptionProcessor()
    return pipeline, molmo_caption_processor

def colorize_depth_maps(
    depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None
):
    """
    Colorize depth maps with reversed colors.
    """
    assert len(depth_map.shape) >= 2, "Invalid dimension"
    
    if isinstance(depth_map, torch.Tensor):
        depth = depth_map.detach().squeeze().numpy()
    elif isinstance(depth_map, np.ndarray):
        depth = depth_map.copy().squeeze()
    # reshape to [ (B,) H, W ]
    if depth.ndim < 3:
        depth = depth[np.newaxis, :, :]

    # Normalize depth values to [0, 1]
    depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1)
    # Invert the depth values to reverse the colors
    depth = 1 - depth

    # Use the colormap
    cm = matplotlib.colormaps[cmap]
    img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3]  # values from 0 to 1
    img_colored_np = np.rollaxis(img_colored_np, 3, 1)

    if valid_mask is not None:
        if isinstance(depth_map, torch.Tensor):
            valid_mask = valid_mask.detach().numpy()
        valid_mask = valid_mask.squeeze()  # [H, W] or [B, H, W]
        if valid_mask.ndim < 3:
            valid_mask = valid_mask[np.newaxis, np.newaxis, :, :]
        else:
            valid_mask = valid_mask[:, np.newaxis, :, :]
        valid_mask = np.repeat(valid_mask, 3, axis=1)
        img_colored_np[~valid_mask] = 0

    if isinstance(depth_map, torch.Tensor):
        img_colored = torch.from_numpy(img_colored_np).float()
    elif isinstance(depth_map, np.ndarray):
        img_colored = img_colored_np

    return img_colored


def format_prompt(task_type: str, captions: List[str]) -> str:
    if not captions:
        return ""
    if task_type == "faceid":
        img_prompts = [f"[[img{i}]] {caption}" for i, caption in enumerate(captions, start=1)]
        return f"[[faceid]] [[img0]] insert/your/caption/here {' '.join(img_prompts)}"
    elif task_type == "image_editing":
        target_caption = captions[0] if len(captions) >= 2 else "Insert target caption here"
        source_caption = captions[1] if len(captions) >= 2 else captions[0]
        return f"[[image_editing]] [[target_caption]] {target_caption} [[source_caption]] {source_caption}"
    elif task_type == "semanticmap2image":
        return f"[[semanticmap2image]] <#00ffff Cyan mask: insert/concept/to/segment/here> {captions[0]}"
    elif task_type == "boundingbox2image":
        return f"[[boundingbox2image]] <#00ffff Cyan boundingbox: insert/concept/to/segment/here> {captions[0]}"
    elif task_type == "multiview":
        # img_prompts = [f"[[img{i}]] {caption}" for i, caption in enumerate(captions)]
        img_prompts = captions[0]
        return f"[[multiview]] {img_prompts}"
    elif task_type == "subject_driven":
        return f"[[subject_driven]] <item: insert/item/here> [[img0]] insert/your/target/caption/here [[img1]] {captions[0]}"
    else:
        return f"{TASK2SPECIAL_TOKENS[task_type]} {captions[0]}"

def update_prompt(images: List[Image.Image], task_type: str, custom_msg: str = None):
    if not images:
        return format_prompt(task_type, []), "Please upload at least one image!"
    try:
        captions = molmo_processor.process(images, custom_msg)
        if not captions:
            return "", "No valid images found!"
        prompt = format_prompt(task_type, captions)
        return prompt, f"Generated {len(captions)} captions successfully!"
    except Exception as e:
        return "", f"Error generating captions: {str(e)}"

def generate_image(images: List[Image.Image], prompt: str, negative_prompt: str, num_inference_steps: int, guidance_scale: float, pag_guidance_scale: float, 
                   denoise_mask: List[str], task_type: str, azimuth: str, elevation: str, distance: str, focal_length: float,
                   height: int = 1024, width: int = 1024, scale_factor: float = 1.0, scale_watershed: float = 1.0,
                   noise_scale: float = None, progress=gr.Progress()):
    try:
        img2img_kwargs = {
            'prompt': prompt,
            'negative_prompt': negative_prompt,
            'num_inference_steps': num_inference_steps,
            'guidance_scale': guidance_scale,
            'height': height,
            'width': width,
            'forward_kwargs': {
                'scale_factor': scale_factor,
                'scale_watershed': scale_watershed
            },
            'noise_scale': noise_scale  # Added noise_scale here
        }

        if task_type == 'multiview':
            # Parse azimuth, elevation, and distance into lists, allowing 'None' values
            azimuths = [float(a.strip()) if a.strip().lower() != 'none' else None for a in azimuth.split(',')] if azimuth else []
            elevations = [float(e.strip()) if e.strip().lower() != 'none' else None for e in elevation.split(',')] if elevation else []
            distances = [float(d.strip()) if d.strip().lower() != 'none' else None for d in distance.split(',')] if distance else []

            num_views = max(len(images), len(azimuths), len(elevations), len(distances))
            if num_views == 0:
                return None, "At least one image or camera parameter must be provided."

            total_components = []
            for i in range(num_views):
                total_components.append(f"image_{i}")
                total_components.append(f"camera_pose_{i}")

            denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]

            if len(denoise_mask_int) != len(total_components):
                return None, f"Denoise mask length mismatch: expected {len(total_components)} components."

            # Pad the input lists to num_views length
            images_padded = images + [] * (num_views - len(images))  # Do not add None
            azimuths_padded = azimuths + [None] * (num_views - len(azimuths))
            elevations_padded = elevations + [None] * (num_views - len(elevations))
            distances_padded = distances + [None] * (num_views - len(distances))

            # Prepare values
            img2img_kwargs.update({
                'image': images_padded,
                'multiview_azimuths': azimuths_padded,
                'multiview_elevations': elevations_padded,
                'multiview_distances': distances_padded,
                'multiview_focal_length': focal_length,  # Pass focal_length here
                'is_multiview': True,
                'denoise_mask': denoise_mask_int,
                # 'predict_camera_poses': True,
            })
        else:
            total_components = ["image_0"] + [f"image_{i+1}" for i in range(len(images))]
            denoise_mask_int = [1 if comp in denoise_mask else 0 for comp in total_components]
            if len(denoise_mask_int) != len(total_components):
                return None, f"Denoise mask length mismatch: expected {len(total_components)} components."

            img2img_kwargs.update({
                'image': images,
                'denoise_mask': denoise_mask_int
            })

        progress(0, desc="Generating image...")
        if task_type == 'text2image':
            output = pipeline(
                prompt=prompt, 
                negative_prompt=negative_prompt, 
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                pag_guidance_scale=pag_guidance_scale,
                height=height, 
                width=width,
                scale_factor=scale_factor,
                scale_watershed=scale_watershed,
                noise_scale=noise_scale  # Added noise_scale here
            )
        else:
            output = pipeline.img2img(**img2img_kwargs)
        progress(1, desc="Done!")

        # Process the output images if task is 'depth2image' and predicting depth
        if task_type == 'depth2image' and denoise_mask_int[-1] == 1:
            processed_images = []
            for img in output.images:
                depth_map = np.array(img.convert('L'))  # Convert to grayscale numpy array
                min_depth = depth_map.min()
                max_depth = depth_map.max()
                colorized = colorize_depth_maps(depth_map, min_depth, max_depth)[0]
                colorized = np.transpose(colorized, (1, 2, 0))
                colorized = (colorized * 255).astype(np.uint8)
                img_colorized = Image.fromarray(colorized)
                processed_images.append(img_colorized)
            output_images = processed_images + output.images
        elif task_type in ['boundingbox2image', 'semanticmap2image'] and denoise_mask_int == [0,1] and images:
            # Interpolate between input and output images
            processed_images = []
            for input_img, output_img in zip(images, output.images):
                input_img_resized = input_img.resize(output_img.size)
                blended_img = Image.blend(input_img_resized, output_img, alpha=0.5)
                processed_images.append(blended_img)
            output_images = processed_images + output.images
        else:
            output_images = output.images

        return output_images, "Generation completed successfully!"

    except Exception as e:
        return None, f"Error during generation: {str(e)}"

def update_denoise_checkboxes(images_state: List[Image.Image], task_type: str, azimuth: str, elevation: str, distance: str):
    if task_type == 'multiview':
        azimuths = [a.strip() for a in azimuth.split(',')] if azimuth else []
        elevations = [e.strip() for e in elevation.split(',')] if elevation else []
        distances = [d.strip() for d in distance.split(',')] if distance else []
        images_len = len(images_state)

        num_views = max(images_len, len(azimuths), len(elevations), len(distances))
        if num_views == 0:
            return gr.update(choices=[], value=[]), "Please provide at least one image or camera parameter."

        # Pad lists to the same length
        azimuths += ['None'] * (num_views - len(azimuths))
        elevations += ['None'] * (num_views - len(elevations))
        distances += ['None'] * (num_views - len(distances))
        # Do not add None to images_state

        labels = []
        values = []
        for i in range(num_views):
            labels.append(f"image_{i}")
            labels.append(f"camera_pose_{i}")

            # Default behavior: condition on provided inputs, generate missing ones
            if i >= images_len:
                values.append(f"image_{i}")
            if azimuths[i].lower() == 'none' or elevations[i].lower() == 'none' or distances[i].lower() == 'none':
                values.append(f"camera_pose_{i}")

        return gr.update(choices=labels, value=values)
    else:
        labels = ["image_0"] + [f"image_{i+1}" for i in range(len(images_state))]
        values = ["image_0"]
        return gr.update(choices=labels, value=values)

def apply_mask(images_state):
    if len(images_state) < 2:
        return None, "Please upload at least two images: first as the base image, second as the mask."
    base_img = images_state[0]
    mask_img = images_state[1]

    # Convert images to arrays
    base_arr = np.array(base_img)
    mask_arr = np.array(mask_img)

    # Convert mask to grayscale
    if mask_arr.ndim == 3:
        gray_mask = cv2.cvtColor(mask_arr, cv2.COLOR_RGB2GRAY)
    else:
        gray_mask = mask_arr

    # Create a binary mask where non-black pixels are True
    binary_mask = gray_mask > 10

    # Define the gray color
    gray_color = np.array([128, 128, 128], dtype=np.uint8)

    # Apply gray color where mask is True
    masked_arr = base_arr.copy()
    masked_arr[binary_mask] = gray_color

    masked_img = Image.fromarray(masked_arr)
    return [masked_img], "Mask applied successfully!"

def process_images_for_task_type(images_state: List[Image.Image], task_type: str):
    # No changes needed here since we are processing the output images
    return images_state, images_state

# Initialize models
pipeline, molmo_processor = initialize_models()

with gr.Blocks(title="OneDiffusion Demo") as demo:
    gr.Markdown("""
    # OneDiffusion Demo

    **Welcome to the OneDiffusion Demo!**

    This application allows you to generate images based on your input prompts for various tasks. Here's how to use it:

    1. **Select Task Type**: Choose the type of task you want to perform from the "Task Type" dropdown menu.

    2. **Upload Images**: Drag and drop images directly onto the upload area, or click to select files from your device.

    3. **Generate Captions**: **If you upload any images**, Click the "Generate Captions with Molmo" button to generate descriptive captions for your uploaded images (depend on the task). You can enter a custom message in the "Custom Message for Molmo" textbox e.g., "caption in 50 words" instead of 100 words.

    4. **Configure Generation Settings**: Expand the "Advanced Configuration" section to adjust parameters like the number of inference steps, guidance scale, image size, and more.

    5. **Generate Images**: After setting your preferences, click the "Generate Image" button. The generated images will appear in the "Generated Images" gallery.

    6. **Manage Images**: Use the "Delete Selected Images" or "Delete All Images" buttons to remove unwanted images from the gallery.

    **Notes**:
    - For text-to-image:
        + simply enter your prompt in this format "[[text2image]] your/prompt/here" and press the "Generate Image" button.
        
    - For boundingbox2image/semantic2image/inpainting etc tasks:
        + To perform condition-to-image such as semantic map to image, follow above steps
        + For image-to-condition e.g., image to depth, change the denoise_mask checkbox before generating images. You must UNCHECK image_0 box and CHECK image_1 box.
        
    - For FaceID tasks: 
        + Use 3 or 4 images if single input image does not give satisfactory results.
        + All images will be resized and center cropped to the input height and width. You should choose height and width so that faces in input images won't be cropped.
        + Model works best with close-up portrait (input and output) images.
        + If the model does not conform your text prompt, try using shorter caption for source image(s).
        + If you have non-human subjects and does not get satisfactory results, try "copying" part of caption of source images where it describes the properties of the subject e.g., a monster with red eyes, sharp teeth, etc.
        
    - For Multiview generation:
        + Only support square images (ideally in 512x512 resolution).
        + Ensure the number of elevations, azimuths, and distances are equal. 
        + The model generally works well for 2-5 views (include both input and generated images). Since the model is trained with 3 views on 512x512 resolution, you might try scale_factor of [1.1; 1.5] and scale_watershed of [100; 400] for better extrapolation.
        + For better results:
            1) try increasing num_inference_steps to 75-100.
            2) avoid aggressively changes in target camera poses, for example to generate novel views at azimuth of 180, (simultaneously) generate 4 views with azimuth of 45, 90, 135, 180.
    
    Enjoy creating images with OneDiffusion!
    """)

    with gr.Row():
        with gr.Column():
            images_state = gr.State([])
            selected_indices_state = gr.State([])
            
            with gr.Row():
                gallery = gr.Gallery(
                    label="Input Images",
                    show_label=True,
                    columns=2,
                    rows=2,
                    height="auto",
                    object_fit="contain"
                )
            
            # In the UI section, update the file_output component:
            file_output = gr.File(
                file_count="multiple",
                file_types=["image"],
                label="Drag and drop images here or click to upload",
                height=100,
                scale=2,
                type="filepath"  # Add this parameter
            )
            
            with gr.Row():
                delete_button = gr.Button("Delete Selected Images")
                delete_all_button = gr.Button("Delete All Images")
            
            task_type = gr.Dropdown(
                choices=list(TASK2SPECIAL_TOKENS.keys()),
                value="text2image",
                label="Task Type"
            )
            
            molmo_message = gr.Textbox(
                lines=2,
                value="Describe the contents of the photo in 100 words.",
                label="Custom message for Molmo captioner"
            )
            
            auto_caption_btn = gr.Button("Generate Captions with Molmo")

        with gr.Column():
            prompt = gr.Textbox(
                lines=3,
                placeholder="Enter your prompt here or use auto-caption...",
                label="Prompt"
            )
            negative_prompt = gr.Textbox(
                lines=3,
                value=NEGATIVE_PROMPT,
                placeholder="Enter negative prompt here...",
                label="Negative Prompt"
            )
            caption_status = gr.Textbox(label="Caption Status")
            
    num_steps = gr.Slider(
        minimum=1,
        maximum=200,
        value=30,
        step=1,
        label="Number of Inference Steps"
    )
    guidance_scale = gr.Slider(
        minimum=0.1,
        maximum=10.0,
        value=4,
        step=0.1,
        label="Guidance Scale"
    )
    pag_guidance_scale = gr.Slider(
        minimum=0.1,
        maximum=10.0,
        value=1,
        step=0.1,
        label="PAG guidance Scale"
    )
    height = gr.Number(value=1024, label="Height")
    width = gr.Number(value=1024, label="Width")
    
    with gr.Accordion("Advanced Configuration", open=False):
        with gr.Row():
            denoise_mask_checkbox = gr.CheckboxGroup(
                label="Denoise Mask",
                choices=["image_0"],
                value=["image_0"]
            )
            azimuth = gr.Textbox(
                value="0",
                label="Azimuths (degrees, comma-separated, 'None' for missing)"
            )
            elevation = gr.Textbox(
                value="0",
                label="Elevations (degrees, comma-separated, 'None' for missing)"
            )
            distance = gr.Textbox(
                value="1.5",
                label="Distances (comma-separated, 'None' for missing)"
            )
            focal_length = gr.Number(
                value=1.3887,
                label="Focal Length of camera for multiview generation"
            )
            scale_factor = gr.Number(value=1.0, label="Scale Factor")
            scale_watershed = gr.Number(value=1.0, label="Scale Watershed")
            noise_scale = gr.Number(value=1.0, label="Noise Scale")  # Added noise_scale input

    output_images = gr.Gallery(
        label="Generated Images",
        show_label=True,
        columns=4,
        rows=2,
        height="auto",
        object_fit="contain"
    )
    
    with gr.Column():
        generate_btn = gr.Button("Generate Image")
        apply_mask_btn = gr.Button("Apply Mask")
    
    status = gr.Textbox(label="Generation Status")

    # Event Handlers
    def update_gallery(files, images_state):
        if not files:
            return images_state, images_state
        
        new_images = []
        for file in files:
            try:
                # Handle both file paths and file objects
                if isinstance(file, dict):  # For drag and drop files
                    file = file['path']
                elif hasattr(file, 'name'):  # For uploaded files
                    file = file.name
                    
                img = Image.open(file).convert('RGB')
                new_images.append(img)
            except Exception as e:
                print(f"Error loading image: {str(e)}")
                continue
                
        images_state.extend(new_images)
        return images_state, images_state

    def on_image_select(evt: gr.SelectData, selected_indices_state):
        selected_indices = selected_indices_state or []
        index = evt.index
        if index in selected_indices:
            selected_indices.remove(index)
        else:
            selected_indices.append(index)
        return selected_indices

    def delete_images(selected_indices, images_state):
        updated_images = [img for i, img in enumerate(images_state) if i not in selected_indices]
        selected_indices_state = []
        return updated_images, updated_images, selected_indices_state

    def delete_all_images(images_state):
        updated_images = []
        selected_indices_state = []
        return updated_images, updated_images, selected_indices_state

    def update_height_width(images_state):
        if images_state:
            closest_ar = get_closest_ratio(
                height=images_state[0].size[1],
                width=images_state[0].size[0],
                ratios=ASPECT_RATIO_512
            )
            height_val, width_val = int(closest_ar[0][0]), int(closest_ar[0][1])
        else:
            height_val, width_val = 1024, 1024  # Default values
        return gr.update(value=height_val), gr.update(value=width_val)

    # Connect events
    file_output.change(
        fn=update_gallery,
        inputs=[file_output, images_state],
        outputs=[images_state, gallery]
    ).then(
        fn=update_height_width,
        inputs=[images_state],
        outputs=[height, width]
    ).then(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    gallery.select(
        fn=on_image_select,
        inputs=[selected_indices_state],
        outputs=[selected_indices_state]
    )

    delete_button.click(
        fn=delete_images,
        inputs=[selected_indices_state, images_state],
        outputs=[images_state, gallery, selected_indices_state]
    ).then(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    delete_all_button.click(
        fn=delete_all_images,
        inputs=[images_state],
        outputs=[images_state, gallery, selected_indices_state]
    ).then(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    task_type.change(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    azimuth.change(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    elevation.change(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    distance.change(
        fn=update_denoise_checkboxes,
        inputs=[images_state, task_type, azimuth, elevation, distance],
        outputs=[denoise_mask_checkbox]
    )

    generate_btn.click(
        fn=generate_image,
        inputs=[
            images_state, prompt, negative_prompt, num_steps, guidance_scale, pag_guidance_scale,
            denoise_mask_checkbox, task_type, azimuth, elevation, distance,
            focal_length, height, width, scale_factor, scale_watershed, noise_scale  # Added noise_scale here
        ],
        outputs=[output_images, status]
    )

    auto_caption_btn.click(
        fn=update_prompt,
        inputs=[images_state, task_type, molmo_message],
        outputs=[prompt, caption_status]
    )
    
    apply_mask_btn.click(
        fn=apply_mask,
        inputs=[images_state],
        outputs=[output_images, status]
    )

if __name__ == "__main__":
    demo.launch(share=True)