lehduong commited on
Commit
07d760c
·
verified ·
1 Parent(s): b9d6b53

Upload folder using huggingface_hub

Browse files
Files changed (28) hide show
  1. dataset/__pycache__/raydiff_utils.cpython-310.pyc +0 -0
  2. dataset/__pycache__/raydiff_utils.cpython-312.pyc +0 -0
  3. dataset/__pycache__/transforms.cpython-310.pyc +0 -0
  4. dataset/__pycache__/utils.cpython-310.pyc +0 -0
  5. dataset/__pycache__/utils.cpython-312.pyc +0 -0
  6. dataset/multitask/__pycache__/multiview.cpython-310.pyc +0 -0
  7. dataset/multitask/__pycache__/multiview.cpython-312.pyc +0 -0
  8. dataset/multitask/multiview.py +277 -0
  9. dataset/raydiff_utils.py +739 -0
  10. dataset/transforms.py +133 -0
  11. dataset/utils.py +175 -0
  12. diffusion/pipelines/__pycache__/image_processor.cpython-310.pyc +0 -0
  13. diffusion/pipelines/__pycache__/onediffusion.cpython-310.pyc +0 -0
  14. diffusion/pipelines/__pycache__/onediffusion.cpython-312.pyc +0 -0
  15. diffusion/pipelines/image_processor.py +674 -0
  16. diffusion/pipelines/onediffusion.py +1080 -0
  17. models/denoiser/__init__.py +3 -0
  18. models/denoiser/__pycache__/__init__.cpython-310.pyc +0 -0
  19. models/denoiser/__pycache__/__init__.cpython-312.pyc +0 -0
  20. models/denoiser/nextdit/__init__.py +1 -0
  21. models/denoiser/nextdit/__pycache__/__init__.cpython-310.pyc +0 -0
  22. models/denoiser/nextdit/__pycache__/__init__.cpython-312.pyc +0 -0
  23. models/denoiser/nextdit/__pycache__/layers.cpython-310.pyc +0 -0
  24. models/denoiser/nextdit/__pycache__/layers.cpython-312.pyc +0 -0
  25. models/denoiser/nextdit/__pycache__/modeling_nextdit.cpython-310.pyc +0 -0
  26. models/denoiser/nextdit/__pycache__/modeling_nextdit.cpython-312.pyc +0 -0
  27. models/denoiser/nextdit/layers.py +132 -0
  28. models/denoiser/nextdit/modeling_nextdit.py +571 -0
dataset/__pycache__/raydiff_utils.cpython-310.pyc ADDED
Binary file (18.2 kB). View file
 
dataset/__pycache__/raydiff_utils.cpython-312.pyc ADDED
Binary file (31.1 kB). View file
 
dataset/__pycache__/transforms.cpython-310.pyc ADDED
Binary file (4.42 kB). View file
 
dataset/__pycache__/utils.cpython-310.pyc ADDED
Binary file (7.81 kB). View file
 
dataset/__pycache__/utils.cpython-312.pyc ADDED
Binary file (13 kB). View file
 
dataset/multitask/__pycache__/multiview.cpython-310.pyc ADDED
Binary file (7.54 kB). View file
 
dataset/multitask/__pycache__/multiview.cpython-312.pyc ADDED
Binary file (13.3 kB). View file
 
dataset/multitask/multiview.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import random
4
+ from PIL import Image
5
+ import torch
6
+ from typing import List, Tuple, Union
7
+ from torch.utils.data import Dataset
8
+ from torchvision import transforms
9
+ import torchvision.transforms as T
10
+ from onediffusion.dataset.utils import *
11
+ import glob
12
+
13
+ from onediffusion.dataset.raydiff_utils import cameras_to_rays, first_camera_transform, normalize_cameras
14
+ from onediffusion.dataset.transforms import CenterCropResizeImage
15
+ from pytorch3d.renderer import PerspectiveCameras
16
+
17
+ import numpy as np
18
+
19
+ def _cameras_from_opencv_projection(
20
+ R: torch.Tensor,
21
+ tvec: torch.Tensor,
22
+ camera_matrix: torch.Tensor,
23
+ image_size: torch.Tensor,
24
+ do_normalize_cameras,
25
+ normalize_scale,
26
+ ) -> PerspectiveCameras:
27
+ focal_length = torch.stack([camera_matrix[:, 0, 0], camera_matrix[:, 1, 1]], dim=-1)
28
+ principal_point = camera_matrix[:, :2, 2]
29
+
30
+ # Retype the image_size correctly and flip to width, height.
31
+ image_size_wh = image_size.to(R).flip(dims=(1,))
32
+
33
+ # Screen to NDC conversion:
34
+ # For non square images, we scale the points such that smallest side
35
+ # has range [-1, 1] and the largest side has range [-u, u], with u > 1.
36
+ # This convention is consistent with the PyTorch3D renderer, as well as
37
+ # the transformation function `get_ndc_to_screen_transform`.
38
+ scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0
39
+ scale = scale.expand(-1, 2)
40
+ c0 = image_size_wh / 2.0
41
+
42
+ # Get the PyTorch3D focal length and principal point.
43
+ focal_pytorch3d = focal_length / scale
44
+ p0_pytorch3d = -(principal_point - c0) / scale
45
+
46
+ # For R, T we flip x, y axes (opencv screen space has an opposite
47
+ # orientation of screen axes).
48
+ # We also transpose R (opencv multiplies points from the opposite=left side).
49
+ R_pytorch3d = R.clone().permute(0, 2, 1)
50
+ T_pytorch3d = tvec.clone()
51
+ R_pytorch3d[:, :, :2] *= -1
52
+ T_pytorch3d[:, :2] *= -1
53
+
54
+ cams = PerspectiveCameras(
55
+ R=R_pytorch3d,
56
+ T=T_pytorch3d,
57
+ focal_length=focal_pytorch3d,
58
+ principal_point=p0_pytorch3d,
59
+ image_size=image_size,
60
+ device=R.device,
61
+ )
62
+
63
+ if do_normalize_cameras:
64
+ cams, _ = normalize_cameras(cams, scale=normalize_scale)
65
+
66
+ cams = first_camera_transform(cams, rotation_only=False)
67
+ return cams
68
+
69
+ def calculate_rays(Ks, sizes, Rs, Ts, target_size, use_plucker=True, do_normalize_cameras=False, normalize_scale=1.0):
70
+ cameras = _cameras_from_opencv_projection(
71
+ R=Rs,
72
+ tvec=Ts,
73
+ camera_matrix=Ks,
74
+ image_size=sizes,
75
+ do_normalize_cameras=do_normalize_cameras,
76
+ normalize_scale=normalize_scale
77
+ )
78
+
79
+ rays_embedding = cameras_to_rays(
80
+ cameras=cameras,
81
+ num_patches_x=target_size,
82
+ num_patches_y=target_size,
83
+ crop_parameters=None,
84
+ use_plucker=use_plucker
85
+ )
86
+
87
+ return rays_embedding.rays
88
+
89
+ def convert_rgba_to_rgb_white_bg(image):
90
+ """Convert RGBA image to RGB with white background"""
91
+ if image.mode == 'RGBA':
92
+ # Create a white background
93
+ background = Image.new('RGBA', image.size, (255, 255, 255, 255))
94
+ # Composite the image onto the white background
95
+ return Image.alpha_composite(background, image).convert('RGB')
96
+ return image.convert('RGB')
97
+
98
+ class MultiviewDataset(Dataset):
99
+ def __init__(
100
+ self,
101
+ scene_folders: str,
102
+ samples_per_set: Union[int, Tuple[int, int]], # Changed from samples_per_set to samples_range
103
+ transform=None,
104
+ caption_keys: Union[str, List] = "caption",
105
+ multiscale=False,
106
+ aspect_ratio_type=ASPECT_RATIO_512,
107
+ c2w_scaling=1.7,
108
+ default_max_distance=1, # default max distance from all camera of a scene ,
109
+ do_normalize=True, # whether normalize translation of c2w with max_distance
110
+ swap_xz=False, # whether swap x and z axis of 3D scenes
111
+ valid_paths: str = "",
112
+ frame_sliding_windows: float = None # limit all sampled frames to be within this window, so that camera poses won't be too different
113
+ ):
114
+ if not isinstance(samples_per_set, tuple) and not isinstance(samples_per_set, list):
115
+ samples_per_set = (samples_per_set, samples_per_set)
116
+ self.samples_range = samples_per_set # Tuple of (min_samples, max_samples)
117
+ self.transform = transform
118
+ self.caption_keys = caption_keys if isinstance(caption_keys, list) else [caption_keys]
119
+ self.aspect_ratio = aspect_ratio_type
120
+ self.scene_folders = sorted(glob.glob(scene_folders))
121
+ # filter out scene folders that do not have transforms.json
122
+ self.scene_folders = list(filter(lambda x: os.path.exists(os.path.join(x, "transforms.json")), self.scene_folders))
123
+
124
+ # if valid_paths.txt exists, only use paths in that file
125
+ if os.path.exists(valid_paths):
126
+ with open(valid_paths, 'r') as f:
127
+ valid_scene_folders = f.read().splitlines()
128
+ self.scene_folders = sorted(valid_scene_folders)
129
+
130
+ self.c2w_scaling = c2w_scaling
131
+ self.do_normalize = do_normalize
132
+ self.default_max_distance = default_max_distance
133
+ self.swap_xz = swap_xz
134
+ self.frame_sliding_windows = frame_sliding_windows
135
+
136
+ if multiscale:
137
+ assert self.aspect_ratio in [ASPECT_RATIO_512, ASPECT_RATIO_1024, ASPECT_RATIO_2048, ASPECT_RATIO_2880]
138
+ if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
139
+ self.interpolate_model = T.InterpolationMode.LANCZOS
140
+ self.ratio_index = {}
141
+ self.ratio_nums = {}
142
+ for k, v in self.aspect_ratio.items():
143
+ self.ratio_index[float(k)] = [] # used for self.getitem
144
+ self.ratio_nums[float(k)] = 0 # used for batch-sampler
145
+
146
+ def __len__(self):
147
+ return len(self.scene_folders)
148
+
149
+ def __getitem__(self, idx):
150
+ try:
151
+ scene_path = self.scene_folders[idx]
152
+
153
+ if os.path.exists(os.path.join(scene_path, "images")):
154
+ image_folder = os.path.join(scene_path, "images")
155
+ downscale_factor = 1
156
+ elif os.path.exists(os.path.join(scene_path, "images_4")):
157
+ image_folder = os.path.join(scene_path, "images_4")
158
+ downscale_factor = 1 / 4
159
+ elif os.path.exists(os.path.join(scene_path, "images_8")):
160
+ image_folder = os.path.join(scene_path, "images_8")
161
+ downscale_factor = 1 / 8
162
+ else:
163
+ raise NotImplementedError
164
+
165
+ json_path = os.path.join(scene_path, "transforms.json")
166
+ caption_path = os.path.join(scene_path, "caption.json")
167
+ image_files = os.listdir(image_folder)
168
+
169
+ with open(json_path, 'r') as f:
170
+ json_data = json.load(f)
171
+ height, width = json_data['h'], json_data['w']
172
+
173
+ dh, dw = int(height * downscale_factor), int(width * downscale_factor)
174
+ fl_x, fl_y = json_data['fl_x'] * downscale_factor, json_data['fl_y'] * downscale_factor
175
+ cx = dw // 2
176
+ cy = dh // 2
177
+
178
+ frame_list = json_data['frames']
179
+
180
+ # Randomly select number of samples
181
+
182
+ samples_per_set = random.randint(self.samples_range[0], self.samples_range[1])
183
+
184
+ # uniformly for all scenes
185
+ if self.frame_sliding_windows is None:
186
+ selected_indices = random.sample(range(len(frame_list)), min(samples_per_set, len(frame_list)))
187
+ # limit the multiview to be in a sliding window (to avoid catastrophic difference in camera angles)
188
+ else:
189
+ # Determine the starting index of the sliding window
190
+ if len(frame_list) <= self.frame_sliding_windows:
191
+ # If the frame list is smaller than or equal to X, use the entire list
192
+ window_start = 0
193
+ window_end = len(frame_list)
194
+ else:
195
+ # Randomly select a starting point for the window
196
+ window_start = random.randint(0, len(frame_list) - self.frame_sliding_windows)
197
+ window_end = window_start + self.frame_sliding_windows
198
+
199
+ # Get the indices within the sliding window
200
+ window_indices = list(range(window_start, window_end))
201
+
202
+ # Randomly sample indices from the window
203
+ selected_indices = random.sample(window_indices, samples_per_set)
204
+
205
+ image_files = [os.path.basename(frame_list[i]['file_path']) for i in selected_indices]
206
+ image_paths = [os.path.join(image_folder, file) for file in image_files]
207
+
208
+ # Load images and convert RGBA to RGB with white background
209
+ images = [convert_rgba_to_rgb_white_bg(Image.open(image_path)) for image_path in image_paths]
210
+
211
+ if self.transform:
212
+ images = [self.transform(image) for image in images]
213
+ else:
214
+ closest_size, closest_ratio = self.aspect_ratio['1.0'], 1.0
215
+ closest_size = tuple(map(int, closest_size))
216
+ transform = T.Compose([
217
+ T.ToTensor(),
218
+ CenterCropResizeImage(closest_size),
219
+ T.Normalize([.5], [.5]),
220
+ ])
221
+ images = [transform(image) for image in images]
222
+ images = torch.stack(images)
223
+
224
+ c2ws = [frame_list[i]['transform_matrix'] for i in selected_indices]
225
+ c2ws = torch.tensor(c2ws).reshape(-1, 4, 4)
226
+ # max_distance = json_data.get('max_distance', self.default_max_distance)
227
+ # if 'max_distance' not in json_data.keys():
228
+ # print(f"not found `max_distance` in json path: {json_path}")
229
+
230
+ if self.swap_xz:
231
+ swap_xz = torch.tensor([[[0, 0, 1., 0],
232
+ [0, 1., 0, 0],
233
+ [-1., 0, 0, 0],
234
+ [0, 0, 0, 1.]]])
235
+ c2ws = swap_xz @ c2ws
236
+
237
+ # OPENGL to OPENCV
238
+ c2ws[:, 0:3, 1:3] *= -1
239
+ c2ws = c2ws[:, [1, 0, 2, 3], :]
240
+ c2ws[:, 2, :] *= -1
241
+
242
+ w2cs = torch.inverse(c2ws)
243
+ K = torch.tensor([[[fl_x, 0, cx], [0, fl_y, cy], [0, 0, 1]]]).repeat(len(c2ws), 1, 1)
244
+ Rs = w2cs[:, :3, :3]
245
+ Ts = w2cs[:, :3, 3]
246
+ sizes = torch.tensor([[dh, dw]]).repeat(len(c2ws), 1)
247
+
248
+ # get ray embedding and padding last dimension to 16 (num channels of VAE)
249
+ # rays_od = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, use_plucker=False, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
250
+ rays = calculate_rays(K, sizes, Rs, Ts, closest_size[0] // 8, do_normalize_cameras=self.do_normalize, normalize_scale=self.c2w_scaling)
251
+ rays = rays.reshape(samples_per_set, closest_size[0] // 8, closest_size[1] // 8, 6)
252
+ # padding = (0, 10) # pad the last dimension to 16
253
+ # rays = torch.nn.functional.pad(rays, padding, "constant", 0)
254
+ rays = torch.cat([rays, rays, rays[..., :4]], dim=-1) * 1.658
255
+
256
+ if os.path.exists(caption_path):
257
+ with open(caption_path, 'r') as f:
258
+ caption_key = random.choice(self.caption_keys)
259
+ caption = json.load(f).get(caption_key, "")
260
+ else:
261
+ caption = ""
262
+
263
+ caption = "[[multiview]] " + caption if caption else "[[multiview]]"
264
+
265
+ return {
266
+ 'pixel_values': images,
267
+ 'rays': rays,
268
+ 'aspect_ratio': closest_ratio,
269
+ 'caption': caption,
270
+ 'height': dh,
271
+ 'width': dw,
272
+ # 'origins': rays_od[..., :3],
273
+ # 'dirs': rays_od[..., 3:6]
274
+ }
275
+ except Exception as e:
276
+ return self.__getitem__(random.randint(0, len(self.scene_folders) - 1))
277
+
dataset/raydiff_utils.py ADDED
@@ -0,0 +1,739 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """
3
+ Adapted from code originally written by David Novotny.
4
+ """
5
+
6
+ import torch
7
+ from pytorch3d.transforms import Rotate, Translate
8
+
9
+ import cv2
10
+ import numpy as np
11
+ import torch
12
+ from pytorch3d.renderer import PerspectiveCameras, RayBundle
13
+
14
+ def intersect_skew_line_groups(p, r, mask):
15
+ # p, r both of shape (B, N, n_intersected_lines, 3)
16
+ # mask of shape (B, N, n_intersected_lines)
17
+ p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask)
18
+ if p_intersect is None:
19
+ return None, None, None, None
20
+ _, p_line_intersect = point_line_distance(
21
+ p, r, p_intersect[..., None, :].expand_as(p)
22
+ )
23
+ intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum(
24
+ dim=-1
25
+ )
26
+ return p_intersect, p_line_intersect, intersect_dist_squared, r
27
+
28
+
29
+ def intersect_skew_lines_high_dim(p, r, mask=None):
30
+ # Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions
31
+ dim = p.shape[-1]
32
+ # make sure the heading vectors are l2-normed
33
+ if mask is None:
34
+ mask = torch.ones_like(p[..., 0])
35
+ r = torch.nn.functional.normalize(r, dim=-1)
36
+
37
+ eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None]
38
+ I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None]
39
+ sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3)
40
+
41
+ # I_eps = torch.zeros_like(I_min_cov.sum(dim=-3)) + 1e-10
42
+ # p_intersect = torch.pinverse(I_min_cov.sum(dim=-3) + I_eps).matmul(sum_proj)[..., 0]
43
+ p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
44
+
45
+ # I_min_cov.sum(dim=-3): torch.Size([1, 1, 3, 3])
46
+ # sum_proj: torch.Size([1, 1, 3, 1])
47
+
48
+ # p_intersect = np.linalg.lstsq(I_min_cov.sum(dim=-3).numpy(), sum_proj.numpy(), rcond=None)[0]
49
+
50
+ if torch.any(torch.isnan(p_intersect)):
51
+ print(p_intersect)
52
+ return None, None
53
+ ipdb.set_trace()
54
+ assert False
55
+ return p_intersect, r
56
+
57
+
58
+ def point_line_distance(p1, r1, p2):
59
+ df = p2 - p1
60
+ proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1)
61
+ line_pt_nearest = p2 - proj_vector
62
+ d = (proj_vector).norm(dim=-1)
63
+ return d, line_pt_nearest
64
+
65
+
66
+ def compute_optical_axis_intersection(cameras):
67
+ centers = cameras.get_camera_center()
68
+ principal_points = cameras.principal_point
69
+
70
+ one_vec = torch.ones((len(cameras), 1), device=centers.device)
71
+ optical_axis = torch.cat((principal_points, one_vec), -1)
72
+
73
+ # optical_axis = torch.cat(
74
+ # (principal_points, cameras.focal_length[:, 0].unsqueeze(1)), -1
75
+ # )
76
+
77
+ pp = cameras.unproject_points(optical_axis, from_ndc=True, world_coordinates=True)
78
+ pp2 = torch.diagonal(pp, dim1=0, dim2=1).T
79
+
80
+ directions = pp2 - centers
81
+ centers = centers.unsqueeze(0).unsqueeze(0)
82
+ directions = directions.unsqueeze(0).unsqueeze(0)
83
+
84
+ p_intersect, p_line_intersect, _, r = intersect_skew_line_groups(
85
+ p=centers, r=directions, mask=None
86
+ )
87
+
88
+ if p_intersect is None:
89
+ dist = None
90
+ else:
91
+ p_intersect = p_intersect.squeeze().unsqueeze(0)
92
+ dist = (p_intersect - centers).norm(dim=-1)
93
+
94
+ return p_intersect, dist, p_line_intersect, pp2, r
95
+
96
+
97
+ def normalize_cameras(cameras, scale=1.0):
98
+ """
99
+ Normalizes cameras such that the optical axes point to the origin, the rotation is
100
+ identity, and the norm of the translation of the first camera is 1.
101
+
102
+ Args:
103
+ cameras (pytorch3d.renderer.cameras.CamerasBase).
104
+ scale (float): Norm of the translation of the first camera.
105
+
106
+ Returns:
107
+ new_cameras (pytorch3d.renderer.cameras.CamerasBase): Normalized cameras.
108
+ undo_transform (function): Function that undoes the normalization.
109
+ """
110
+
111
+ # Let distance from first camera to origin be unit
112
+ new_cameras = cameras.clone()
113
+ new_transform = (
114
+ new_cameras.get_world_to_view_transform()
115
+ ) # potential R is not valid matrix
116
+ p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
117
+ cameras
118
+ )
119
+
120
+ if p_intersect is None:
121
+ print("Warning: optical axes code has a nan. Returning identity cameras.")
122
+ new_cameras.R[:] = torch.eye(3, device=cameras.R.device, dtype=cameras.R.dtype)
123
+ new_cameras.T[:] = torch.tensor(
124
+ [0, 0, 1], device=cameras.T.device, dtype=cameras.T.dtype
125
+ )
126
+ return new_cameras, lambda x: x
127
+
128
+ d = dist.squeeze(dim=1).squeeze(dim=0)[0]
129
+ # Degenerate case
130
+ if d == 0:
131
+ print(cameras.T)
132
+ print(new_transform.get_matrix()[:, 3, :3])
133
+ assert False
134
+ assert d != 0
135
+
136
+ # Can't figure out how to make scale part of the transform too without messing up R.
137
+ # Ideally, we would just wrap it all in a single Pytorch3D transform so that it
138
+ # would work with any structure (eg PointClouds, Meshes).
139
+ tR = Rotate(new_cameras.R[0].unsqueeze(0)).inverse()
140
+ tT = Translate(p_intersect)
141
+ t = tR.compose(tT)
142
+
143
+ new_transform = t.compose(new_transform)
144
+ new_cameras.R = new_transform.get_matrix()[:, :3, :3]
145
+ new_cameras.T = new_transform.get_matrix()[:, 3, :3] / d * scale
146
+
147
+ def undo_transform(cameras):
148
+ cameras_copy = cameras.clone()
149
+ cameras_copy.T *= d / scale
150
+ new_t = (
151
+ t.inverse().compose(cameras_copy.get_world_to_view_transform()).get_matrix()
152
+ )
153
+ cameras_copy.R = new_t[:, :3, :3]
154
+ cameras_copy.T = new_t[:, 3, :3]
155
+ return cameras_copy
156
+
157
+ return new_cameras, undo_transform
158
+
159
+ def first_camera_transform(cameras, rotation_only=True):
160
+ new_cameras = cameras.clone()
161
+ new_transform = new_cameras.get_world_to_view_transform()
162
+ tR = Rotate(new_cameras.R[0].unsqueeze(0))
163
+ if rotation_only:
164
+ t = tR.inverse()
165
+ else:
166
+ tT = Translate(new_cameras.T[0].unsqueeze(0))
167
+ t = tR.compose(tT).inverse()
168
+
169
+ new_transform = t.compose(new_transform)
170
+ new_cameras.R = new_transform.get_matrix()[:, :3, :3]
171
+ new_cameras.T = new_transform.get_matrix()[:, 3, :3]
172
+
173
+ return new_cameras
174
+
175
+
176
+ def get_identity_cameras_with_intrinsics(cameras):
177
+ D = len(cameras)
178
+ device = cameras.R.device
179
+
180
+ new_cameras = cameras.clone()
181
+ new_cameras.R = torch.eye(3, device=device).unsqueeze(0).repeat((D, 1, 1))
182
+ new_cameras.T = torch.zeros((D, 3), device=device)
183
+
184
+ return new_cameras
185
+
186
+
187
+ def normalize_cameras_batch(cameras, scale=1.0, normalize_first_camera=False):
188
+ new_cameras = []
189
+ undo_transforms = []
190
+ for cam in cameras:
191
+ if normalize_first_camera:
192
+ # Normalize cameras such that first camera is identity and origin is at
193
+ # first camera center.
194
+ normalized_cameras = first_camera_transform(cam, rotation_only=False)
195
+ undo_transform = None
196
+ else:
197
+ normalized_cameras, undo_transform = normalize_cameras(cam, scale=scale)
198
+ new_cameras.append(normalized_cameras)
199
+ undo_transforms.append(undo_transform)
200
+ return new_cameras, undo_transforms
201
+
202
+
203
+ class Rays(object):
204
+ def __init__(
205
+ self,
206
+ rays=None,
207
+ origins=None,
208
+ directions=None,
209
+ moments=None,
210
+ is_plucker=False,
211
+ moments_rescale=1.0,
212
+ ndc_coordinates=None,
213
+ crop_parameters=None,
214
+ num_patches_x=16,
215
+ num_patches_y=16,
216
+ ):
217
+ """
218
+ Ray class to keep track of current ray representation.
219
+
220
+ Args:
221
+ rays: (..., 6).
222
+ origins: (..., 3).
223
+ directions: (..., 3).
224
+ moments: (..., 3).
225
+ is_plucker: If True, rays are in plucker coordinates (Default: False).
226
+ moments_rescale: Rescale the moment component of the rays by a scalar.
227
+ ndc_coordinates: (..., 2): NDC coordinates of each ray.
228
+ """
229
+ if rays is not None:
230
+ self.rays = rays
231
+ self._is_plucker = is_plucker
232
+ elif origins is not None and directions is not None:
233
+ self.rays = torch.cat((origins, directions), dim=-1)
234
+ self._is_plucker = False
235
+ elif directions is not None and moments is not None:
236
+ self.rays = torch.cat((directions, moments), dim=-1)
237
+ self._is_plucker = True
238
+ else:
239
+ raise Exception("Invalid combination of arguments")
240
+
241
+ if moments_rescale != 1.0:
242
+ self.rescale_moments(moments_rescale)
243
+
244
+ if ndc_coordinates is not None:
245
+ self.ndc_coordinates = ndc_coordinates
246
+ elif crop_parameters is not None:
247
+ # (..., H, W, 2)
248
+ xy_grid = compute_ndc_coordinates(
249
+ crop_parameters,
250
+ num_patches_x=num_patches_x,
251
+ num_patches_y=num_patches_y,
252
+ )[..., :2]
253
+ xy_grid = xy_grid.reshape(*xy_grid.shape[:-3], -1, 2)
254
+ self.ndc_coordinates = xy_grid
255
+ else:
256
+ self.ndc_coordinates = None
257
+
258
+ def __getitem__(self, index):
259
+ return Rays(
260
+ rays=self.rays[index],
261
+ is_plucker=self._is_plucker,
262
+ ndc_coordinates=(
263
+ self.ndc_coordinates[index]
264
+ if self.ndc_coordinates is not None
265
+ else None
266
+ ),
267
+ )
268
+
269
+ def to_spatial(self, include_ndc_coordinates=False):
270
+ """
271
+ Converts rays to spatial representation: (..., H * W, 6) --> (..., 6, H, W)
272
+
273
+ Returns:
274
+ torch.Tensor: (..., 6, H, W)
275
+ """
276
+ rays = self.to_plucker().rays
277
+ *batch_dims, P, D = rays.shape
278
+ H = W = int(np.sqrt(P))
279
+ assert H * W == P
280
+ rays = torch.transpose(rays, -1, -2) # (..., 6, H * W)
281
+ rays = rays.reshape(*batch_dims, D, H, W)
282
+ if include_ndc_coordinates:
283
+ ndc_coords = self.ndc_coordinates.transpose(-1, -2) # (..., 2, H * W)
284
+ ndc_coords = ndc_coords.reshape(*batch_dims, 2, H, W)
285
+ rays = torch.cat((rays, ndc_coords), dim=-3)
286
+ return rays
287
+
288
+ def rescale_moments(self, scale):
289
+ """
290
+ Rescale the moment component of the rays by a scalar. Might be desirable since
291
+ moments may come from a very narrow distribution.
292
+
293
+ Note that this modifies in place!
294
+ """
295
+ if self.is_plucker:
296
+ self.rays[..., 3:] *= scale
297
+ return self
298
+ else:
299
+ return self.to_plucker().rescale_moments(scale)
300
+
301
+ @classmethod
302
+ def from_spatial(cls, rays, moments_rescale=1.0, ndc_coordinates=None):
303
+ """
304
+ Converts rays from spatial representation: (..., 6, H, W) --> (..., H * W, 6)
305
+
306
+ Args:
307
+ rays: (..., 6, H, W)
308
+
309
+ Returns:
310
+ Rays: (..., H * W, 6)
311
+ """
312
+ *batch_dims, D, H, W = rays.shape
313
+ rays = rays.reshape(*batch_dims, D, H * W)
314
+ rays = torch.transpose(rays, -1, -2)
315
+ return cls(
316
+ rays=rays,
317
+ is_plucker=True,
318
+ moments_rescale=moments_rescale,
319
+ ndc_coordinates=ndc_coordinates,
320
+ )
321
+
322
+ def to_point_direction(self, normalize_moment=True):
323
+ """
324
+ Convert to point direction representation <O, D>.
325
+
326
+ Returns:
327
+ rays: (..., 6).
328
+ """
329
+ if self._is_plucker:
330
+ direction = torch.nn.functional.normalize(self.rays[..., :3], dim=-1)
331
+ moment = self.rays[..., 3:]
332
+ if normalize_moment:
333
+ c = torch.linalg.norm(direction, dim=-1, keepdim=True)
334
+ moment = moment / c
335
+ points = torch.cross(direction, moment, dim=-1)
336
+ return Rays(
337
+ rays=torch.cat((points, direction), dim=-1),
338
+ is_plucker=False,
339
+ ndc_coordinates=self.ndc_coordinates,
340
+ )
341
+ else:
342
+ return self
343
+
344
+ def to_plucker(self):
345
+ """
346
+ Convert to plucker representation <D, OxD>.
347
+ """
348
+ if self.is_plucker:
349
+ return self
350
+ else:
351
+ ray = self.rays.clone()
352
+ ray_origins = ray[..., :3]
353
+ ray_directions = ray[..., 3:]
354
+ # Normalize ray directions to unit vectors
355
+ ray_directions = ray_directions / ray_directions.norm(dim=-1, keepdim=True)
356
+ plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1)
357
+ new_ray = torch.cat([ray_directions, plucker_normal], dim=-1)
358
+ return Rays(
359
+ rays=new_ray, is_plucker=True, ndc_coordinates=self.ndc_coordinates
360
+ )
361
+
362
+ def get_directions(self, normalize=True):
363
+ if self.is_plucker:
364
+ directions = self.rays[..., :3]
365
+ else:
366
+ directions = self.rays[..., 3:]
367
+ if normalize:
368
+ directions = torch.nn.functional.normalize(directions, dim=-1)
369
+ return directions
370
+
371
+ def get_origins(self):
372
+ if self.is_plucker:
373
+ origins = self.to_point_direction().get_origins()
374
+ else:
375
+ origins = self.rays[..., :3]
376
+ return origins
377
+
378
+ def get_moments(self):
379
+ if self.is_plucker:
380
+ moments = self.rays[..., 3:]
381
+ else:
382
+ moments = self.to_plucker().get_moments()
383
+ return moments
384
+
385
+ def get_ndc_coordinates(self):
386
+ return self.ndc_coordinates
387
+
388
+ @property
389
+ def is_plucker(self):
390
+ return self._is_plucker
391
+
392
+ @property
393
+ def device(self):
394
+ return self.rays.device
395
+
396
+ def __repr__(self, *args, **kwargs):
397
+ ray_str = self.rays.__repr__(*args, **kwargs)[6:] # remove "tensor"
398
+ if self._is_plucker:
399
+ return "PluRay" + ray_str
400
+ else:
401
+ return "DirRay" + ray_str
402
+
403
+ def to(self, device):
404
+ self.rays = self.rays.to(device)
405
+
406
+ def clone(self):
407
+ return Rays(rays=self.rays.clone(), is_plucker=self._is_plucker)
408
+
409
+ @property
410
+ def shape(self):
411
+ return self.rays.shape
412
+
413
+ def visualize(self):
414
+ directions = torch.nn.functional.normalize(self.get_directions(), dim=-1).cpu()
415
+ moments = torch.nn.functional.normalize(self.get_moments(), dim=-1).cpu()
416
+ return (directions + 1) / 2, (moments + 1) / 2
417
+
418
+ def to_ray_bundle(self, length=0.3, recenter=True):
419
+ lengths = torch.ones_like(self.get_origins()[..., :2]) * length
420
+ lengths[..., 0] = 0
421
+ if recenter:
422
+ centers, _ = intersect_skew_lines_high_dim(
423
+ self.get_origins(), self.get_directions()
424
+ )
425
+ centers = centers.unsqueeze(1).repeat(1, lengths.shape[1], 1)
426
+ else:
427
+ centers = self.get_origins()
428
+ return RayBundle(
429
+ origins=centers,
430
+ directions=self.get_directions(),
431
+ lengths=lengths,
432
+ xys=self.get_directions(),
433
+ )
434
+
435
+
436
+ def cameras_to_rays(
437
+ cameras,
438
+ crop_parameters,
439
+ use_half_pix=True,
440
+ use_plucker=True,
441
+ num_patches_x=16,
442
+ num_patches_y=16,
443
+ ):
444
+ """
445
+ Unprojects rays from camera center to grid on image plane.
446
+
447
+ Args:
448
+ cameras: Pytorch3D cameras to unproject. Can be batched.
449
+ crop_parameters: Crop parameters in NDC (cc_x, cc_y, crop_width, scale).
450
+ Shape is (B, 4).
451
+ use_half_pix: If True, use half pixel offset (Default: True).
452
+ use_plucker: If True, return rays in plucker coordinates (Default: False).
453
+ num_patches_x: Number of patches in x direction (Default: 16).
454
+ num_patches_y: Number of patches in y direction (Default: 16).
455
+ """
456
+ unprojected = []
457
+ crop_parameters_list = (
458
+ crop_parameters if crop_parameters is not None else [None for _ in cameras]
459
+ )
460
+ for camera, crop_param in zip(cameras, crop_parameters_list):
461
+ xyd_grid = compute_ndc_coordinates(
462
+ crop_parameters=crop_param,
463
+ use_half_pix=use_half_pix,
464
+ num_patches_x=num_patches_x,
465
+ num_patches_y=num_patches_y,
466
+ )
467
+
468
+ unprojected.append(
469
+ camera.unproject_points(
470
+ xyd_grid.reshape(-1, 3), world_coordinates=True, from_ndc=True
471
+ )
472
+ )
473
+ unprojected = torch.stack(unprojected, dim=0) # (N, P, 3)
474
+ origins = cameras.get_camera_center().unsqueeze(1) # (N, 1, 3)
475
+ origins = origins.repeat(1, num_patches_x * num_patches_y, 1) # (N, P, 3)
476
+ directions = unprojected - origins
477
+
478
+ rays = Rays(
479
+ origins=origins,
480
+ directions=directions,
481
+ crop_parameters=crop_parameters,
482
+ num_patches_x=num_patches_x,
483
+ num_patches_y=num_patches_y,
484
+ )
485
+ if use_plucker:
486
+ return rays.to_plucker()
487
+ return rays
488
+
489
+
490
+ def rays_to_cameras(
491
+ rays,
492
+ crop_parameters,
493
+ num_patches_x=16,
494
+ num_patches_y=16,
495
+ use_half_pix=True,
496
+ sampled_ray_idx=None,
497
+ cameras=None,
498
+ focal_length=(3.453,),
499
+ ):
500
+ """
501
+ If cameras are provided, will use those intrinsics. Otherwise will use the provided
502
+ focal_length(s). Dataset default is 3.32.
503
+
504
+ Args:
505
+ rays (Rays): (N, P, 6)
506
+ crop_parameters (torch.Tensor): (N, 4)
507
+ """
508
+ device = rays.device
509
+ origins = rays.get_origins()
510
+ directions = rays.get_directions()
511
+ camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)
512
+
513
+ # Retrieve target rays
514
+ if cameras is None:
515
+ if len(focal_length) == 1:
516
+ focal_length = focal_length * rays.shape[0]
517
+ I_camera = PerspectiveCameras(focal_length=focal_length, device=device)
518
+ else:
519
+ # Use same intrinsics but reset to identity extrinsics.
520
+ I_camera = cameras.clone()
521
+ I_camera.R[:] = torch.eye(3, device=device)
522
+ I_camera.T[:] = torch.zeros(3, device=device)
523
+ I_patch_rays = cameras_to_rays(
524
+ cameras=I_camera,
525
+ num_patches_x=num_patches_x,
526
+ num_patches_y=num_patches_y,
527
+ use_half_pix=use_half_pix,
528
+ crop_parameters=crop_parameters,
529
+ ).get_directions()
530
+
531
+ if sampled_ray_idx is not None:
532
+ I_patch_rays = I_patch_rays[:, sampled_ray_idx]
533
+
534
+ # Compute optimal rotation to align rays
535
+ R = torch.zeros_like(I_camera.R)
536
+ for i in range(len(I_camera)):
537
+ R[i] = compute_optimal_rotation_alignment(
538
+ I_patch_rays[i],
539
+ directions[i],
540
+ )
541
+
542
+ # Construct and return rotated camera
543
+ cam = I_camera.clone()
544
+ cam.R = R
545
+ cam.T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
546
+ return cam
547
+
548
+
549
+ # https://www.reddit.com/r/learnmath/comments/v1crd7/linear_algebra_qr_to_ql_decomposition/
550
+ def ql_decomposition(A):
551
+ P = torch.tensor([[0, 0, 1], [0, 1, 0], [1, 0, 0]], device=A.device).float()
552
+ A_tilde = torch.matmul(A, P)
553
+ Q_tilde, R_tilde = torch.linalg.qr(A_tilde)
554
+ Q = torch.matmul(Q_tilde, P)
555
+ L = torch.matmul(torch.matmul(P, R_tilde), P)
556
+ d = torch.diag(L)
557
+ Q[:, 0] *= torch.sign(d[0])
558
+ Q[:, 1] *= torch.sign(d[1])
559
+ Q[:, 2] *= torch.sign(d[2])
560
+ L[0] *= torch.sign(d[0])
561
+ L[1] *= torch.sign(d[1])
562
+ L[2] *= torch.sign(d[2])
563
+ return Q, L
564
+
565
+
566
+ def rays_to_cameras_homography(
567
+ rays,
568
+ crop_parameters,
569
+ num_patches_x=16,
570
+ num_patches_y=16,
571
+ use_half_pix=True,
572
+ sampled_ray_idx=None,
573
+ reproj_threshold=0.2,
574
+ ):
575
+ """
576
+ Args:
577
+ rays (Rays): (N, P, 6)
578
+ crop_parameters (torch.Tensor): (N, 4)
579
+ """
580
+ device = rays.device
581
+ origins = rays.get_origins()
582
+ directions = rays.get_directions()
583
+ camera_centers, _ = intersect_skew_lines_high_dim(origins, directions)
584
+
585
+ # Retrieve target rays
586
+ I_camera = PerspectiveCameras(focal_length=[1] * rays.shape[0], device=device)
587
+ I_patch_rays = cameras_to_rays(
588
+ cameras=I_camera,
589
+ num_patches_x=num_patches_x,
590
+ num_patches_y=num_patches_y,
591
+ use_half_pix=use_half_pix,
592
+ crop_parameters=crop_parameters,
593
+ ).get_directions()
594
+
595
+ if sampled_ray_idx is not None:
596
+ I_patch_rays = I_patch_rays[:, sampled_ray_idx]
597
+
598
+ # Compute optimal rotation to align rays
599
+ Rs = []
600
+ focal_lengths = []
601
+ principal_points = []
602
+ for i in range(rays.shape[-3]):
603
+ R, f, pp = compute_optimal_rotation_intrinsics(
604
+ I_patch_rays[i],
605
+ directions[i],
606
+ reproj_threshold=reproj_threshold,
607
+ )
608
+ Rs.append(R)
609
+ focal_lengths.append(f)
610
+ principal_points.append(pp)
611
+
612
+ R = torch.stack(Rs)
613
+ focal_lengths = torch.stack(focal_lengths)
614
+ principal_points = torch.stack(principal_points)
615
+ T = -torch.matmul(R.transpose(1, 2), camera_centers.unsqueeze(2)).squeeze(2)
616
+ return PerspectiveCameras(
617
+ R=R,
618
+ T=T,
619
+ focal_length=focal_lengths,
620
+ principal_point=principal_points,
621
+ device=device,
622
+ )
623
+
624
+
625
+ def compute_optimal_rotation_alignment(A, B):
626
+ """
627
+ Compute optimal R that minimizes: || A - B @ R ||_F
628
+
629
+ Args:
630
+ A (torch.Tensor): (N, 3)
631
+ B (torch.Tensor): (N, 3)
632
+
633
+ Returns:
634
+ R (torch.tensor): (3, 3)
635
+ """
636
+ # normally with R @ B, this would be A @ B.T
637
+ H = B.T @ A
638
+ U, _, Vh = torch.linalg.svd(H, full_matrices=True)
639
+ s = torch.linalg.det(U @ Vh)
640
+ S_prime = torch.diag(torch.tensor([1, 1, torch.sign(s)], device=A.device))
641
+ return U @ S_prime @ Vh
642
+
643
+
644
+ def compute_optimal_rotation_intrinsics(
645
+ rays_origin, rays_target, z_threshold=1e-4, reproj_threshold=0.2
646
+ ):
647
+ """
648
+ Note: for some reason, f seems to be 1/f.
649
+
650
+ Args:
651
+ rays_origin (torch.Tensor): (N, 3)
652
+ rays_target (torch.Tensor): (N, 3)
653
+ z_threshold (float): Threshold for z value to be considered valid.
654
+
655
+ Returns:
656
+ R (torch.tensor): (3, 3)
657
+ focal_length (torch.tensor): (2,)
658
+ principal_point (torch.tensor): (2,)
659
+ """
660
+ device = rays_origin.device
661
+ z_mask = torch.logical_and(
662
+ torch.abs(rays_target) > z_threshold, torch.abs(rays_origin) > z_threshold
663
+ )[:, 2]
664
+ rays_target = rays_target[z_mask]
665
+ rays_origin = rays_origin[z_mask]
666
+ rays_origin = rays_origin[:, :2] / rays_origin[:, -1:]
667
+ rays_target = rays_target[:, :2] / rays_target[:, -1:]
668
+
669
+ A, _ = cv2.findHomography(
670
+ rays_origin.cpu().numpy(),
671
+ rays_target.cpu().numpy(),
672
+ cv2.RANSAC,
673
+ reproj_threshold,
674
+ )
675
+ A = torch.from_numpy(A).float().to(device)
676
+
677
+ if torch.linalg.det(A) < 0:
678
+ A = -A
679
+
680
+ R, L = ql_decomposition(A)
681
+ L = L / L[2][2]
682
+
683
+ f = torch.stack((L[0][0], L[1][1]))
684
+ pp = torch.stack((L[2][0], L[2][1]))
685
+ return R, f, pp
686
+
687
+
688
+ def compute_ndc_coordinates(
689
+ crop_parameters=None,
690
+ use_half_pix=True,
691
+ num_patches_x=16,
692
+ num_patches_y=16,
693
+ device=None,
694
+ ):
695
+ """
696
+ Computes NDC Grid using crop_parameters. If crop_parameters is not provided,
697
+ then it assumes that the crop is the entire image (corresponding to an NDC grid
698
+ where top left corner is (1, 1) and bottom right corner is (-1, -1)).
699
+ """
700
+ if crop_parameters is None:
701
+ cc_x, cc_y, width = 0, 0, 2
702
+ else:
703
+ if len(crop_parameters.shape) > 1:
704
+ return torch.stack(
705
+ [
706
+ compute_ndc_coordinates(
707
+ crop_parameters=crop_param,
708
+ use_half_pix=use_half_pix,
709
+ num_patches_x=num_patches_x,
710
+ num_patches_y=num_patches_y,
711
+ )
712
+ for crop_param in crop_parameters
713
+ ],
714
+ dim=0,
715
+ )
716
+ device = crop_parameters.device
717
+ cc_x, cc_y, width, _ = crop_parameters
718
+
719
+ dx = 1 / num_patches_x
720
+ dy = 1 / num_patches_y
721
+ if use_half_pix:
722
+ min_y = 1 - dy
723
+ max_y = -min_y
724
+ min_x = 1 - dx
725
+ max_x = -min_x
726
+ else:
727
+ min_y = min_x = 1
728
+ max_y = -1 + 2 * dy
729
+ max_x = -1 + 2 * dx
730
+
731
+ y, x = torch.meshgrid(
732
+ torch.linspace(min_y, max_y, num_patches_y, dtype=torch.float32, device=device),
733
+ torch.linspace(min_x, max_x, num_patches_x, dtype=torch.float32, device=device),
734
+ indexing="ij",
735
+ )
736
+ x_prime = x * width / 2 - cc_x
737
+ y_prime = y * width / 2 - cc_y
738
+ xyd_grid = torch.stack([x_prime, y_prime, torch.ones_like(x)], dim=-1)
739
+ return xyd_grid
dataset/transforms.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+
4
+ def crop(image, i, j, h, w):
5
+ """
6
+ Args:
7
+ image (torch.tensor): Image to be cropped. Size is (C, H, W)
8
+ """
9
+ if len(image.size()) != 3:
10
+ raise ValueError("image should be a 3D tensor")
11
+ return image[..., i : i + h, j : j + w]
12
+
13
+ def resize(image, target_size, interpolation_mode):
14
+ if len(target_size) != 2:
15
+ raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
16
+ return F.interpolate(image.unsqueeze(0), size=target_size, mode=interpolation_mode, align_corners=False).squeeze(0)
17
+
18
+ def resize_scale(image, target_size, interpolation_mode):
19
+ if len(target_size) != 2:
20
+ raise ValueError(f"target size should be tuple (height, width), instead got {target_size}")
21
+ H, W = image.size(-2), image.size(-1)
22
+ scale_ = target_size[0] / min(H, W)
23
+ return F.interpolate(image.unsqueeze(0), scale_factor=scale_, mode=interpolation_mode, align_corners=False).squeeze(0)
24
+
25
+ def resized_crop(image, i, j, h, w, size, interpolation_mode="bilinear"):
26
+ """
27
+ Do spatial cropping and resizing to the image
28
+ Args:
29
+ image (torch.tensor): Image to be cropped. Size is (C, H, W)
30
+ i (int): i in (i,j) i.e coordinates of the upper left corner.
31
+ j (int): j in (i,j) i.e coordinates of the upper left corner.
32
+ h (int): Height of the cropped region.
33
+ w (int): Width of the cropped region.
34
+ size (tuple(int, int)): height and width of resized image
35
+ Returns:
36
+ image (torch.tensor): Resized and cropped image. Size is (C, H, W)
37
+ """
38
+ if len(image.size()) != 3:
39
+ raise ValueError("image should be a 3D torch.tensor")
40
+ image = crop(image, i, j, h, w)
41
+ image = resize(image, size, interpolation_mode)
42
+ return image
43
+
44
+ def center_crop(image, crop_size):
45
+ if len(image.size()) != 3:
46
+ raise ValueError("image should be a 3D torch.tensor")
47
+ h, w = image.size(-2), image.size(-1)
48
+ th, tw = crop_size
49
+ if h < th or w < tw:
50
+ raise ValueError("height and width must be no smaller than crop_size")
51
+ i = int(round((h - th) / 2.0))
52
+ j = int(round((w - tw) / 2.0))
53
+ return crop(image, i, j, th, tw)
54
+
55
+ def center_crop_using_short_edge(image):
56
+ if len(image.size()) != 3:
57
+ raise ValueError("image should be a 3D torch.tensor")
58
+ h, w = image.size(-2), image.size(-1)
59
+ if h < w:
60
+ th, tw = h, h
61
+ i = 0
62
+ j = int(round((w - tw) / 2.0))
63
+ else:
64
+ th, tw = w, w
65
+ i = int(round((h - th) / 2.0))
66
+ j = 0
67
+ return crop(image, i, j, th, tw)
68
+
69
+ class CenterCropResizeImage:
70
+ """
71
+ Resize the image while maintaining aspect ratio, and then crop it to the desired size.
72
+ The resizing is done such that the area of padding/cropping is minimized.
73
+ """
74
+ def __init__(self, size, interpolation_mode="bilinear"):
75
+ if isinstance(size, tuple):
76
+ if len(size) != 2:
77
+ raise ValueError(f"Size should be a tuple (height, width), instead got {size}")
78
+ self.size = size
79
+ else:
80
+ self.size = (size, size)
81
+ self.interpolation_mode = interpolation_mode
82
+
83
+ def __call__(self, image):
84
+ """
85
+ Args:
86
+ image (torch.Tensor): Image to be resized and cropped. Size is (C, H, W)
87
+
88
+ Returns:
89
+ torch.Tensor: Resized and cropped image. Size is (C, target_height, target_width)
90
+ """
91
+ target_height, target_width = self.size
92
+ target_aspect = target_width / target_height
93
+
94
+ # Get current image shape and aspect ratio
95
+ _, height, width = image.shape
96
+ height, width = float(height), float(width)
97
+ current_aspect = width / height
98
+
99
+ # Calculate crop dimensions
100
+ if current_aspect > target_aspect:
101
+ # Image is wider than target, crop width
102
+ crop_height = height
103
+ crop_width = height * target_aspect
104
+ else:
105
+ # Image is taller than target, crop height
106
+ crop_height = width / target_aspect
107
+ crop_width = width
108
+
109
+ # Calculate crop coordinates (center crop)
110
+ y1 = (height - crop_height) / 2
111
+ x1 = (width - crop_width) / 2
112
+
113
+ # Perform the crop
114
+ cropped_image = crop(image, int(y1), int(x1), int(crop_height), int(crop_width))
115
+
116
+ # Resize the cropped image to the target size
117
+ resized_image = resize(cropped_image, self.size, self.interpolation_mode)
118
+
119
+ return resized_image
120
+
121
+ # Example usage
122
+ if __name__ == "__main__":
123
+ # Create a sample image tensor
124
+ sample_image = torch.rand(3, 480, 640) # (C, H, W)
125
+
126
+ # Initialize the transform
127
+ transform = CenterCropResizeImage(size=(224, 224), interpolation_mode="bilinear")
128
+
129
+ # Apply the transform
130
+ transformed_image = transform(sample_image)
131
+
132
+ print(f"Original image shape: {sample_image.shape}")
133
+ print(f"Transformed image shape: {transformed_image.shape}")
dataset/utils.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ASPECT_RATIO_2880 = {
3
+ '0.25': [1408.0, 5760.0], '0.26': [1408.0, 5568.0], '0.27': [1408.0, 5376.0], '0.28': [1408.0, 5184.0],
4
+ '0.32': [1600.0, 4992.0], '0.33': [1600.0, 4800.0], '0.34': [1600.0, 4672.0], '0.4': [1792.0, 4480.0],
5
+ '0.42': [1792.0, 4288.0], '0.47': [1920.0, 4096.0], '0.49': [1920.0, 3904.0], '0.51': [1920.0, 3776.0],
6
+ '0.55': [2112.0, 3840.0], '0.59': [2112.0, 3584.0], '0.68': [2304.0, 3392.0], '0.72': [2304.0, 3200.0],
7
+ '0.78': [2496.0, 3200.0], '0.83': [2496.0, 3008.0], '0.89': [2688.0, 3008.0], '0.93': [2688.0, 2880.0],
8
+ '1.0': [2880.0, 2880.0], '1.07': [2880.0, 2688.0], '1.12': [3008.0, 2688.0], '1.21': [3008.0, 2496.0],
9
+ '1.28': [3200.0, 2496.0], '1.39': [3200.0, 2304.0], '1.47': [3392.0, 2304.0], '1.7': [3584.0, 2112.0],
10
+ '1.82': [3840.0, 2112.0], '2.03': [3904.0, 1920.0], '2.13': [4096.0, 1920.0], '2.39': [4288.0, 1792.0],
11
+ '2.5': [4480.0, 1792.0], '2.92': [4672.0, 1600.0], '3.0': [4800.0, 1600.0], '3.12': [4992.0, 1600.0],
12
+ '3.68': [5184.0, 1408.0], '3.82': [5376.0, 1408.0], '3.95': [5568.0, 1408.0], '4.0': [5760.0, 1408.0]
13
+ }
14
+
15
+ ASPECT_RATIO_2048 = {
16
+ '0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0], '0.27': [1024.0, 3840.0], '0.28': [1024.0, 3712.0],
17
+ '0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
18
+ '0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
19
+ '0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
20
+ '0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
21
+ '1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
22
+ '1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
23
+ '1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
24
+ '2.5': [3200.0, 1280.0], '2.89': [3328.0, 1152.0], '3.0': [3456.0, 1152.0], '3.11': [3584.0, 1152.0],
25
+ '3.62': [3712.0, 1024.0], '3.75': [3840.0, 1024.0], '3.88': [3968.0, 1024.0], '4.0': [4096.0, 1024.0]
26
+ }
27
+
28
+ ASPECT_RATIO_1024 = {
29
+ '0.25': [512., 2048.], '0.26': [512., 1984.], '0.27': [512., 1920.], '0.28': [512., 1856.],
30
+ '0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
31
+ '0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
32
+ '0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
33
+ '0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
34
+ '1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
35
+ '1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
36
+ '1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
37
+ '2.5': [1600., 640.], '2.89': [1664., 576.], '3.0': [1728., 576.], '3.11': [1792., 576.],
38
+ '3.62': [1856., 512.], '3.75': [1920., 512.], '3.88': [1984., 512.], '4.0': [2048., 512.],
39
+ }
40
+
41
+ ASPECT_RATIO_512 = {
42
+ '0.25': [256.0, 1024.0], '0.26': [256.0, 992.0], '0.27': [256.0, 960.0], '0.28': [256.0, 928.0],
43
+ '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
44
+ '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
45
+ '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
46
+ '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
47
+ '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
48
+ '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
49
+ '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
50
+ '2.5': [800.0, 320.0], '2.89': [832.0, 288.0], '3.0': [864.0, 288.0], '3.11': [896.0, 288.0],
51
+ '3.62': [928.0, 256.0], '3.75': [960.0, 256.0], '3.88': [992.0, 256.0], '4.0': [1024.0, 256.0]
52
+ }
53
+
54
+
55
+ ASPECT_RATIO_384 = {
56
+ '0.25': [192.0, 768.0],
57
+ '0.26': [192.0, 736.0],
58
+ '0.27': [208.0, 768.0],
59
+ '0.28': [208.0, 736.0],
60
+ '0.33': [240.0, 720.0],
61
+ '0.4': [256.0, 640.0],
62
+ '0.42': [304.0, 720.0],
63
+ '0.48': [368.0, 768.0],
64
+ '0.5': [384.0, 768.0],
65
+ '0.52': [384.0, 736.0],
66
+ '0.57': [384.0, 672.0],
67
+ '0.6': [384.0, 640.0],
68
+ '0.73': [384.0, 528.0],
69
+ '0.77': [384.0, 496.0],
70
+ '0.83': [384.0, 464.0],
71
+ '0.89': [384.0, 432.0],
72
+ '0.92': [384.0, 416.0],
73
+ '1.0': [384.0, 384.0],
74
+ '1.09': [384.0, 352.0],
75
+ '1.14': [384.0, 336.0],
76
+ '1.2': [384.0, 320.0],
77
+ '1.26': [384.0, 304.0],
78
+ '1.33': [384.0, 288.0],
79
+ '1.41': [384.0, 272.0],
80
+ '1.6': [384.0, 240.0],
81
+ '1.71': [384.0, 224.0],
82
+ '2.0': [384.0, 192.0],
83
+ '2.4': [384.0, 160.0],
84
+ '2.88': [368.0, 128.0],
85
+ '3.0': [384.0, 128.0],
86
+ '3.43': [384.0, 112.0],
87
+ '4.0': [384.0, 96.0]
88
+ }
89
+
90
+ ASPECT_RATIO_256 = {
91
+ '0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0],
92
+ '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
93
+ '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
94
+ '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
95
+ '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
96
+ '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
97
+ '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
98
+ '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
99
+ '2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0],
100
+ '3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0]
101
+ }
102
+
103
+ ASPECT_RATIO_256_TEST = {
104
+ '0.25': [128.0, 512.0], '0.28': [128.0, 464.0],
105
+ '0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
106
+ '0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
107
+ '0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
108
+ '0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
109
+ '1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
110
+ '1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
111
+ '1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
112
+ '2.5': [400.0, 160.0], '3.0': [432.0, 144.0],
113
+ '4.0': [512.0, 128.0]
114
+ }
115
+
116
+ ASPECT_RATIO_512_TEST = {
117
+ '0.25': [256.0, 1024.0], '0.28': [256.0, 928.0],
118
+ '0.32': [288.0, 896.0], '0.33': [288.0, 864.0], '0.35': [288.0, 832.0], '0.4': [320.0, 800.0],
119
+ '0.42': [320.0, 768.0], '0.48': [352.0, 736.0], '0.5': [352.0, 704.0], '0.52': [352.0, 672.0],
120
+ '0.57': [384.0, 672.0], '0.6': [384.0, 640.0], '0.68': [416.0, 608.0], '0.72': [416.0, 576.0],
121
+ '0.78': [448.0, 576.0], '0.82': [448.0, 544.0], '0.88': [480.0, 544.0], '0.94': [480.0, 512.0],
122
+ '1.0': [512.0, 512.0], '1.07': [512.0, 480.0], '1.13': [544.0, 480.0], '1.21': [544.0, 448.0],
123
+ '1.29': [576.0, 448.0], '1.38': [576.0, 416.0], '1.46': [608.0, 416.0], '1.67': [640.0, 384.0],
124
+ '1.75': [672.0, 384.0], '2.0': [704.0, 352.0], '2.09': [736.0, 352.0], '2.4': [768.0, 320.0],
125
+ '2.5': [800.0, 320.0], '3.0': [864.0, 288.0],
126
+ '4.0': [1024.0, 256.0]
127
+ }
128
+
129
+ ASPECT_RATIO_1024_TEST = {
130
+ '0.25': [512., 2048.], '0.28': [512., 1856.],
131
+ '0.32': [576., 1792.], '0.33': [576., 1728.], '0.35': [576., 1664.], '0.4': [640., 1600.],
132
+ '0.42': [640., 1536.], '0.48': [704., 1472.], '0.5': [704., 1408.], '0.52': [704., 1344.],
133
+ '0.57': [768., 1344.], '0.6': [768., 1280.], '0.68': [832., 1216.], '0.72': [832., 1152.],
134
+ '0.78': [896., 1152.], '0.82': [896., 1088.], '0.88': [960., 1088.], '0.94': [960., 1024.],
135
+ '1.0': [1024., 1024.], '1.07': [1024., 960.], '1.13': [1088., 960.], '1.21': [1088., 896.],
136
+ '1.29': [1152., 896.], '1.38': [1152., 832.], '1.46': [1216., 832.], '1.67': [1280., 768.],
137
+ '1.75': [1344., 768.], '2.0': [1408., 704.], '2.09': [1472., 704.], '2.4': [1536., 640.],
138
+ '2.5': [1600., 640.], '3.0': [1728., 576.],
139
+ '4.0': [2048., 512.],
140
+ }
141
+
142
+ ASPECT_RATIO_2048_TEST = {
143
+ '0.25': [1024.0, 4096.0], '0.26': [1024.0, 3968.0],
144
+ '0.32': [1152.0, 3584.0], '0.33': [1152.0, 3456.0], '0.35': [1152.0, 3328.0], '0.4': [1280.0, 3200.0],
145
+ '0.42': [1280.0, 3072.0], '0.48': [1408.0, 2944.0], '0.5': [1408.0, 2816.0], '0.52': [1408.0, 2688.0],
146
+ '0.57': [1536.0, 2688.0], '0.6': [1536.0, 2560.0], '0.68': [1664.0, 2432.0], '0.72': [1664.0, 2304.0],
147
+ '0.78': [1792.0, 2304.0], '0.82': [1792.0, 2176.0], '0.88': [1920.0, 2176.0], '0.94': [1920.0, 2048.0],
148
+ '1.0': [2048.0, 2048.0], '1.07': [2048.0, 1920.0], '1.13': [2176.0, 1920.0], '1.21': [2176.0, 1792.0],
149
+ '1.29': [2304.0, 1792.0], '1.38': [2304.0, 1664.0], '1.46': [2432.0, 1664.0], '1.67': [2560.0, 1536.0],
150
+ '1.75': [2688.0, 1536.0], '2.0': [2816.0, 1408.0], '2.09': [2944.0, 1408.0], '2.4': [3072.0, 1280.0],
151
+ '2.5': [3200.0, 1280.0], '3.0': [3456.0, 1152.0],
152
+ '4.0': [4096.0, 1024.0]
153
+ }
154
+
155
+ ASPECT_RATIO_2880_TEST = {
156
+ '0.25': [2048.0, 8192.0], '0.26': [2048.0, 7936.0],
157
+ '0.32': [2304.0, 7168.0], '0.33': [2304.0, 6912.0], '0.35': [2304.0, 6656.0], '0.4': [2560.0, 6400.0],
158
+ '0.42': [2560.0, 6144.0], '0.48': [2816.0, 5888.0], '0.5': [2816.0, 5632.0], '0.52': [2816.0, 5376.0],
159
+ '0.57': [3072.0, 5376.0], '0.6': [3072.0, 5120.0], '0.68': [3328.0, 4864.0], '0.72': [3328.0, 4608.0],
160
+ '0.78': [3584.0, 4608.0], '0.82': [3584.0, 4352.0], '0.88': [3840.0, 4352.0], '0.94': [3840.0, 4096.0],
161
+ '1.0': [4096.0, 4096.0], '1.07': [4096.0, 3840.0], '1.13': [4352.0, 3840.0], '1.21': [4352.0, 3584.0],
162
+ '1.29': [4608.0, 3584.0], '1.38': [4608.0, 3328.0], '1.46': [4864.0, 3328.0], '1.67': [5120.0, 3072.0],
163
+ '1.75': [5376.0, 3072.0], '2.0': [5632.0, 2816.0], '2.09': [5888.0, 2816.0], '2.4': [6144.0, 2560.0],
164
+ '2.5': [6400.0, 2560.0], '3.0': [6912.0, 2304.0],
165
+ '4.0': [8192.0, 2048.0],
166
+ }
167
+
168
+ def get_chunks(lst, n):
169
+ for i in range(0, len(lst), n):
170
+ yield lst[i:i + n]
171
+
172
+ def get_closest_ratio(height: float, width: float, ratios: dict):
173
+ aspect_ratio = height / width
174
+ closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
175
+ return ratios[closest_ratio], float(closest_ratio)
diffusion/pipelines/__pycache__/image_processor.cpython-310.pyc ADDED
Binary file (22 kB). View file
 
diffusion/pipelines/__pycache__/onediffusion.cpython-310.pyc ADDED
Binary file (31.1 kB). View file
 
diffusion/pipelines/__pycache__/onediffusion.cpython-312.pyc ADDED
Binary file (51.8 kB). View file
 
diffusion/pipelines/image_processor.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import math
16
+ import warnings
17
+ from typing import List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torchvision.transforms as T
24
+ from PIL import Image, ImageFilter, ImageOps
25
+
26
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
27
+ from diffusers.utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
28
+
29
+ from onediffusion.dataset.transforms import CenterCropResizeImage
30
+
31
+ PipelineImageInput = Union[
32
+ PIL.Image.Image,
33
+ np.ndarray,
34
+ torch.Tensor,
35
+ List[PIL.Image.Image],
36
+ List[np.ndarray],
37
+ List[torch.Tensor],
38
+ ]
39
+
40
+ PipelineDepthInput = PipelineImageInput
41
+
42
+
43
+ def is_valid_image(image):
44
+ return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)
45
+
46
+
47
+ def is_valid_image_imagelist(images):
48
+ # check if the image input is one of the supported formats for image and image list:
49
+ # it can be either one of below 3
50
+ # (1) a 4d pytorch tensor or numpy array,
51
+ # (2) a valid image: PIL.Image.Image, 2-d np.ndarray or torch.Tensor (grayscale image), 3-d np.ndarray or torch.Tensor
52
+ # (3) a list of valid image
53
+ if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
54
+ return True
55
+ elif is_valid_image(images):
56
+ return True
57
+ elif isinstance(images, list):
58
+ return all(is_valid_image(image) for image in images)
59
+ return False
60
+
61
+
62
+ class VaeImageProcessorOneDiffuser(ConfigMixin):
63
+ """
64
+ Image processor for VAE.
65
+
66
+ Args:
67
+ do_resize (`bool`, *optional*, defaults to `True`):
68
+ Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
69
+ `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
70
+ vae_scale_factor (`int`, *optional*, defaults to `8`):
71
+ VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
72
+ resample (`str`, *optional*, defaults to `lanczos`):
73
+ Resampling filter to use when resizing the image.
74
+ do_normalize (`bool`, *optional*, defaults to `True`):
75
+ Whether to normalize the image to [-1,1].
76
+ do_binarize (`bool`, *optional*, defaults to `False`):
77
+ Whether to binarize the image to 0/1.
78
+ do_convert_rgb (`bool`, *optional*, defaults to be `False`):
79
+ Whether to convert the images to RGB format.
80
+ do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
81
+ Whether to convert the images to grayscale format.
82
+ """
83
+
84
+ config_name = CONFIG_NAME
85
+
86
+ @register_to_config
87
+ def __init__(
88
+ self,
89
+ do_resize: bool = True,
90
+ vae_scale_factor: int = 8,
91
+ vae_latent_channels: int = 4,
92
+ resample: str = "lanczos",
93
+ do_normalize: bool = True,
94
+ do_binarize: bool = False,
95
+ do_convert_rgb: bool = False,
96
+ do_convert_grayscale: bool = False,
97
+ ):
98
+ super().__init__()
99
+ if do_convert_rgb and do_convert_grayscale:
100
+ raise ValueError(
101
+ "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
102
+ " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
103
+ " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
104
+ )
105
+
106
+ @staticmethod
107
+ def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
108
+ """
109
+ Convert a numpy image or a batch of images to a PIL image.
110
+ """
111
+ if images.ndim == 3:
112
+ images = images[None, ...]
113
+ images = (images * 255).round().astype("uint8")
114
+ if images.shape[-1] == 1:
115
+ # special case for grayscale (single channel) images
116
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
117
+ else:
118
+ pil_images = [Image.fromarray(image) for image in images]
119
+
120
+ return pil_images
121
+
122
+ @staticmethod
123
+ def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
124
+ """
125
+ Convert a PIL image or a list of PIL images to NumPy arrays.
126
+ """
127
+ if not isinstance(images, list):
128
+ images = [images]
129
+ images = [np.array(image).astype(np.float32) / 255.0 for image in images]
130
+ images = np.stack(images, axis=0)
131
+
132
+ return images
133
+
134
+ @staticmethod
135
+ def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
136
+ """
137
+ Convert a NumPy image to a PyTorch tensor.
138
+ """
139
+ if images.ndim == 3:
140
+ images = images[..., None]
141
+
142
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
143
+ return images
144
+
145
+ @staticmethod
146
+ def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
147
+ """
148
+ Convert a PyTorch tensor to a NumPy image.
149
+ """
150
+ images = images.cpu().permute(0, 2, 3, 1).float().numpy()
151
+ return images
152
+
153
+ @staticmethod
154
+ def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
155
+ """
156
+ Normalize an image array to [-1,1].
157
+ """
158
+ return 2.0 * images - 1.0
159
+
160
+ @staticmethod
161
+ def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
162
+ """
163
+ Denormalize an image array to [0,1].
164
+ """
165
+ return (images / 2 + 0.5).clamp(0, 1)
166
+
167
+ @staticmethod
168
+ def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
169
+ """
170
+ Converts a PIL image to RGB format.
171
+ """
172
+ image = image.convert("RGB")
173
+
174
+ return image
175
+
176
+ @staticmethod
177
+ def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
178
+ """
179
+ Converts a PIL image to grayscale format.
180
+ """
181
+ image = image.convert("L")
182
+
183
+ return image
184
+
185
+ @staticmethod
186
+ def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
187
+ """
188
+ Applies Gaussian blur to an image.
189
+ """
190
+ image = image.filter(ImageFilter.GaussianBlur(blur_factor))
191
+
192
+ return image
193
+
194
+ @staticmethod
195
+ def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
196
+ """
197
+ Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
198
+ ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
199
+ processing are 512x512, the region will be expanded to 128x128.
200
+
201
+ Args:
202
+ mask_image (PIL.Image.Image): Mask image.
203
+ width (int): Width of the image to be processed.
204
+ height (int): Height of the image to be processed.
205
+ pad (int, optional): Padding to be added to the crop region. Defaults to 0.
206
+
207
+ Returns:
208
+ tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
209
+ matches the original aspect ratio.
210
+ """
211
+
212
+ mask_image = mask_image.convert("L")
213
+ mask = np.array(mask_image)
214
+
215
+ # 1. find a rectangular region that contains all masked ares in an image
216
+ h, w = mask.shape
217
+ crop_left = 0
218
+ for i in range(w):
219
+ if not (mask[:, i] == 0).all():
220
+ break
221
+ crop_left += 1
222
+
223
+ crop_right = 0
224
+ for i in reversed(range(w)):
225
+ if not (mask[:, i] == 0).all():
226
+ break
227
+ crop_right += 1
228
+
229
+ crop_top = 0
230
+ for i in range(h):
231
+ if not (mask[i] == 0).all():
232
+ break
233
+ crop_top += 1
234
+
235
+ crop_bottom = 0
236
+ for i in reversed(range(h)):
237
+ if not (mask[i] == 0).all():
238
+ break
239
+ crop_bottom += 1
240
+
241
+ # 2. add padding to the crop region
242
+ x1, y1, x2, y2 = (
243
+ int(max(crop_left - pad, 0)),
244
+ int(max(crop_top - pad, 0)),
245
+ int(min(w - crop_right + pad, w)),
246
+ int(min(h - crop_bottom + pad, h)),
247
+ )
248
+
249
+ # 3. expands crop region to match the aspect ratio of the image to be processed
250
+ ratio_crop_region = (x2 - x1) / (y2 - y1)
251
+ ratio_processing = width / height
252
+
253
+ if ratio_crop_region > ratio_processing:
254
+ desired_height = (x2 - x1) / ratio_processing
255
+ desired_height_diff = int(desired_height - (y2 - y1))
256
+ y1 -= desired_height_diff // 2
257
+ y2 += desired_height_diff - desired_height_diff // 2
258
+ if y2 >= mask_image.height:
259
+ diff = y2 - mask_image.height
260
+ y2 -= diff
261
+ y1 -= diff
262
+ if y1 < 0:
263
+ y2 -= y1
264
+ y1 -= y1
265
+ if y2 >= mask_image.height:
266
+ y2 = mask_image.height
267
+ else:
268
+ desired_width = (y2 - y1) * ratio_processing
269
+ desired_width_diff = int(desired_width - (x2 - x1))
270
+ x1 -= desired_width_diff // 2
271
+ x2 += desired_width_diff - desired_width_diff // 2
272
+ if x2 >= mask_image.width:
273
+ diff = x2 - mask_image.width
274
+ x2 -= diff
275
+ x1 -= diff
276
+ if x1 < 0:
277
+ x2 -= x1
278
+ x1 -= x1
279
+ if x2 >= mask_image.width:
280
+ x2 = mask_image.width
281
+
282
+ return x1, y1, x2, y2
283
+
284
+ def _resize_and_fill(
285
+ self,
286
+ image: PIL.Image.Image,
287
+ width: int,
288
+ height: int,
289
+ ) -> PIL.Image.Image:
290
+ """
291
+ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
292
+ the image within the dimensions, filling empty with data from image.
293
+
294
+ Args:
295
+ image: The image to resize.
296
+ width: The width to resize the image to.
297
+ height: The height to resize the image to.
298
+ """
299
+
300
+ ratio = width / height
301
+ src_ratio = image.width / image.height
302
+
303
+ src_w = width if ratio < src_ratio else image.width * height // image.height
304
+ src_h = height if ratio >= src_ratio else image.height * width // image.width
305
+
306
+ resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
307
+ res = Image.new("RGB", (width, height))
308
+ res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
309
+
310
+ if ratio < src_ratio:
311
+ fill_height = height // 2 - src_h // 2
312
+ if fill_height > 0:
313
+ res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
314
+ res.paste(
315
+ resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
316
+ box=(0, fill_height + src_h),
317
+ )
318
+ elif ratio > src_ratio:
319
+ fill_width = width // 2 - src_w // 2
320
+ if fill_width > 0:
321
+ res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
322
+ res.paste(
323
+ resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
324
+ box=(fill_width + src_w, 0),
325
+ )
326
+
327
+ return res
328
+
329
+ def _resize_and_crop(
330
+ self,
331
+ image: PIL.Image.Image,
332
+ width: int,
333
+ height: int,
334
+ ) -> PIL.Image.Image:
335
+ """
336
+ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
337
+ the image within the dimensions, cropping the excess.
338
+
339
+ Args:
340
+ image: The image to resize.
341
+ width: The width to resize the image to.
342
+ height: The height to resize the image to.
343
+ """
344
+ ratio = width / height
345
+ src_ratio = image.width / image.height
346
+
347
+ src_w = width if ratio > src_ratio else image.width * height // image.height
348
+ src_h = height if ratio <= src_ratio else image.height * width // image.width
349
+
350
+ resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
351
+ res = Image.new("RGB", (width, height))
352
+ res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
353
+ return res
354
+
355
+ def resize(
356
+ self,
357
+ image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
358
+ height: int,
359
+ width: int,
360
+ resize_mode: str = "default", # "default", "fill", "crop"
361
+ ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
362
+ """
363
+ Resize image.
364
+
365
+ Args:
366
+ image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
367
+ The image input, can be a PIL image, numpy array or pytorch tensor.
368
+ height (`int`):
369
+ The height to resize to.
370
+ width (`int`):
371
+ The width to resize to.
372
+ resize_mode (`str`, *optional*, defaults to `default`):
373
+ The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
374
+ within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
375
+ will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
376
+ then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
377
+ the image to fit within the specified width and height, maintaining the aspect ratio, and then center
378
+ the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
379
+ supported for PIL image input.
380
+
381
+ Returns:
382
+ `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
383
+ The resized image.
384
+ """
385
+ if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
386
+ raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
387
+ if isinstance(image, PIL.Image.Image):
388
+ if resize_mode == "default":
389
+ image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
390
+ elif resize_mode == "fill":
391
+ image = self._resize_and_fill(image, width, height)
392
+ elif resize_mode == "crop":
393
+ image = self._resize_and_crop(image, width, height)
394
+ else:
395
+ raise ValueError(f"resize_mode {resize_mode} is not supported")
396
+
397
+ elif isinstance(image, torch.Tensor):
398
+ image = torch.nn.functional.interpolate(
399
+ image,
400
+ size=(height, width),
401
+ )
402
+ elif isinstance(image, np.ndarray):
403
+ image = self.numpy_to_pt(image)
404
+ image = torch.nn.functional.interpolate(
405
+ image,
406
+ size=(height, width),
407
+ )
408
+ image = self.pt_to_numpy(image)
409
+ return image
410
+
411
+ def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
412
+ """
413
+ Create a mask.
414
+
415
+ Args:
416
+ image (`PIL.Image.Image`):
417
+ The image input, should be a PIL image.
418
+
419
+ Returns:
420
+ `PIL.Image.Image`:
421
+ The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
422
+ """
423
+ image[image < 0.5] = 0
424
+ image[image >= 0.5] = 1
425
+
426
+ return image
427
+
428
+ def get_default_height_width(
429
+ self,
430
+ image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
431
+ height: Optional[int] = None,
432
+ width: Optional[int] = None,
433
+ ) -> Tuple[int, int]:
434
+ """
435
+ This function return the height and width that are downscaled to the next integer multiple of
436
+ `vae_scale_factor`.
437
+
438
+ Args:
439
+ image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
440
+ The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
441
+ shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
442
+ have shape `[batch, channel, height, width]`.
443
+ height (`int`, *optional*, defaults to `None`):
444
+ The height in preprocessed image. If `None`, will use the height of `image` input.
445
+ width (`int`, *optional*`, defaults to `None`):
446
+ The width in preprocessed. If `None`, will use the width of the `image` input.
447
+ """
448
+
449
+ if height is None:
450
+ if isinstance(image, PIL.Image.Image):
451
+ height = image.height
452
+ elif isinstance(image, torch.Tensor):
453
+ height = image.shape[2]
454
+ else:
455
+ height = image.shape[1]
456
+
457
+ if width is None:
458
+ if isinstance(image, PIL.Image.Image):
459
+ width = image.width
460
+ elif isinstance(image, torch.Tensor):
461
+ width = image.shape[3]
462
+ else:
463
+ width = image.shape[2]
464
+
465
+ width, height = (
466
+ x - x % self.config.vae_scale_factor for x in (width, height)
467
+ ) # resize to integer multiple of vae_scale_factor
468
+
469
+ return height, width
470
+
471
+ def preprocess(
472
+ self,
473
+ image: PipelineImageInput,
474
+ height: Optional[int] = None,
475
+ width: Optional[int] = None,
476
+ resize_mode: str = "default", # "default", "fill", "crop"
477
+ crops_coords: Optional[Tuple[int, int, int, int]] = None,
478
+ do_crop: bool = True,
479
+ ) -> torch.Tensor:
480
+ """
481
+ Preprocess the image input.
482
+
483
+ Args:
484
+ image (`pipeline_image_input`):
485
+ The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
486
+ supported formats.
487
+ height (`int`, *optional*, defaults to `None`):
488
+ The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
489
+ height.
490
+ width (`int`, *optional*`, defaults to `None`):
491
+ The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
492
+ resize_mode (`str`, *optional*, defaults to `default`):
493
+ The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
494
+ the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
495
+ resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
496
+ center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
497
+ image to fit within the specified width and height, maintaining the aspect ratio, and then center the
498
+ image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
499
+ supported for PIL image input.
500
+ crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
501
+ The crop coordinates for each image in the batch. If `None`, will not crop the image.
502
+ """
503
+ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
504
+
505
+ # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
506
+ if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
507
+ if isinstance(image, torch.Tensor):
508
+ # if image is a pytorch tensor could have 2 possible shapes:
509
+ # 1. batch x height x width: we should insert the channel dimension at position 1
510
+ # 2. channel x height x width: we should insert batch dimension at position 0,
511
+ # however, since both channel and batch dimension has same size 1, it is same to insert at position 1
512
+ # for simplicity, we insert a dimension of size 1 at position 1 for both cases
513
+ image = image.unsqueeze(1)
514
+ else:
515
+ # if it is a numpy array, it could have 2 possible shapes:
516
+ # 1. batch x height x width: insert channel dimension on last position
517
+ # 2. height x width x channel: insert batch dimension on first position
518
+ if image.shape[-1] == 1:
519
+ image = np.expand_dims(image, axis=0)
520
+ else:
521
+ image = np.expand_dims(image, axis=-1)
522
+
523
+ if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
524
+ warnings.warn(
525
+ "Passing `image` as a list of 4d np.ndarray is deprecated."
526
+ "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
527
+ FutureWarning,
528
+ )
529
+ image = np.concatenate(image, axis=0)
530
+ if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
531
+ warnings.warn(
532
+ "Passing `image` as a list of 4d torch.Tensor is deprecated."
533
+ "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
534
+ FutureWarning,
535
+ )
536
+ image = torch.cat(image, axis=0)
537
+
538
+ if not is_valid_image_imagelist(image):
539
+ raise ValueError(
540
+ f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
541
+ )
542
+ if not isinstance(image, list):
543
+ image = [image]
544
+
545
+ if isinstance(image[0], PIL.Image.Image):
546
+ pass
547
+ elif isinstance(image[0], np.ndarray):
548
+ image = self.numpy_to_pil(image)
549
+ elif isinstance(image[0], torch.Tensor):
550
+ image = self.pt_to_numpy(image)
551
+ image = self.numpy_to_pil(image)
552
+
553
+ if do_crop:
554
+ transforms = T.Compose([
555
+ T.Lambda(lambda image: image.convert('RGB')),
556
+ T.ToTensor(),
557
+ CenterCropResizeImage((height, width)),
558
+ T.Normalize([.5], [.5]),
559
+ ])
560
+ else:
561
+ transforms = T.Compose([
562
+ T.Lambda(lambda image: image.convert('RGB')),
563
+ T.ToTensor(),
564
+ T.Resize((height, width)),
565
+ T.Normalize([.5], [.5]),
566
+ ])
567
+ image = torch.stack([transforms(i) for i in image])
568
+
569
+ # expected range [0,1], normalize to [-1,1]
570
+ do_normalize = self.config.do_normalize
571
+ if do_normalize and image.min() < 0:
572
+ warnings.warn(
573
+ "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
574
+ f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
575
+ FutureWarning,
576
+ )
577
+ do_normalize = False
578
+ if do_normalize:
579
+ image = self.normalize(image)
580
+
581
+ if self.config.do_binarize:
582
+ image = self.binarize(image)
583
+
584
+ return image
585
+
586
+ def postprocess(
587
+ self,
588
+ image: torch.Tensor,
589
+ output_type: str = "pil",
590
+ do_denormalize: Optional[List[bool]] = None,
591
+ ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
592
+ """
593
+ Postprocess the image output from tensor to `output_type`.
594
+
595
+ Args:
596
+ image (`torch.Tensor`):
597
+ The image input, should be a pytorch tensor with shape `B x C x H x W`.
598
+ output_type (`str`, *optional*, defaults to `pil`):
599
+ The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
600
+ do_denormalize (`List[bool]`, *optional*, defaults to `None`):
601
+ Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
602
+ `VaeImageProcessor` config.
603
+
604
+ Returns:
605
+ `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
606
+ The postprocessed image.
607
+ """
608
+ if not isinstance(image, torch.Tensor):
609
+ raise ValueError(
610
+ f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
611
+ )
612
+ if output_type not in ["latent", "pt", "np", "pil"]:
613
+ deprecation_message = (
614
+ f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
615
+ "`pil`, `np`, `pt`, `latent`"
616
+ )
617
+ deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
618
+ output_type = "np"
619
+
620
+ if output_type == "latent":
621
+ return image
622
+
623
+ if do_denormalize is None:
624
+ do_denormalize = [self.config.do_normalize] * image.shape[0]
625
+
626
+ image = torch.stack(
627
+ [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
628
+ )
629
+
630
+ if output_type == "pt":
631
+ return image
632
+
633
+ image = self.pt_to_numpy(image)
634
+
635
+ if output_type == "np":
636
+ return image
637
+
638
+ if output_type == "pil":
639
+ return self.numpy_to_pil(image)
640
+
641
+ def apply_overlay(
642
+ self,
643
+ mask: PIL.Image.Image,
644
+ init_image: PIL.Image.Image,
645
+ image: PIL.Image.Image,
646
+ crop_coords: Optional[Tuple[int, int, int, int]] = None,
647
+ ) -> PIL.Image.Image:
648
+ """
649
+ overlay the inpaint output to the original image
650
+ """
651
+
652
+ width, height = image.width, image.height
653
+
654
+ init_image = self.resize(init_image, width=width, height=height)
655
+ mask = self.resize(mask, width=width, height=height)
656
+
657
+ init_image_masked = PIL.Image.new("RGBa", (width, height))
658
+ init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
659
+ init_image_masked = init_image_masked.convert("RGBA")
660
+
661
+ if crop_coords is not None:
662
+ x, y, x2, y2 = crop_coords
663
+ w = x2 - x
664
+ h = y2 - y
665
+ base_image = PIL.Image.new("RGBA", (width, height))
666
+ image = self.resize(image, height=h, width=w, resize_mode="crop")
667
+ base_image.paste(image, (x, y))
668
+ image = base_image.convert("RGB")
669
+
670
+ image = image.convert("RGBA")
671
+ image.alpha_composite(init_image_masked)
672
+ image = image.convert("RGB")
673
+
674
+ return image
diffusion/pipelines/onediffusion.py ADDED
@@ -0,0 +1,1080 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import einops
2
+ import inspect
3
+ import torch
4
+ import numpy as np
5
+ import PIL
6
+ import os
7
+
8
+ from dataclasses import dataclass
9
+ from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
10
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
11
+ from diffusers.utils import (
12
+ CONFIG_NAME,
13
+ DEPRECATED_REVISION_ARGS,
14
+ BaseOutput,
15
+ PushToHubMixin,
16
+ deprecate,
17
+ is_accelerate_available,
18
+ is_accelerate_version,
19
+ is_torch_npu_available,
20
+ is_torch_version,
21
+ logging,
22
+ numpy_to_pil,
23
+ replace_example_docstring,
24
+ )
25
+ from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
26
+ from diffusers.utils.torch_utils import randn_tensor
27
+ from diffusers.utils import BaseOutput
28
+ # from diffusers.image_processor import VaeImageProcessor
29
+ from transformers import T5EncoderModel, T5Tokenizer
30
+ from typing import Any, Callable, Dict, List, Optional, Union
31
+ from PIL import Image
32
+
33
+ from onediffusion.models.denoiser.nextdit import NextDiT
34
+ from onediffusion.dataset.utils import *
35
+ from onediffusion.dataset.multitask.multiview import calculate_rays
36
+ from onediffusion.diffusion.pipelines.image_processor import VaeImageProcessorOneDiffuser
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+ SUPPORTED_DEVICE_MAP = ["balanced"]
41
+
42
+ EXAMPLE_DOC_STRING = """
43
+ Examples:
44
+ ```py
45
+ >>> import torch
46
+ >>> from one_diffusion import OneDiffusionPipeline
47
+
48
+ >>> pipe = OneDiffusionPipeline.from_pretrained("path_to_one_diffuser_model")
49
+ >>> pipe = pipe.to("cuda")
50
+
51
+ >>> prompt = "A beautiful sunset over the ocean"
52
+ >>> image = pipe(prompt).images[0]
53
+ >>> image.save("beautiful_sunset.png")
54
+ ```
55
+ """
56
+
57
+ def create_c2w_matrix(azimuth_deg, elevation_deg, distance=1.0, target=np.array([0, 0, 0])):
58
+ """
59
+ Create a Camera-to-World (C2W) matrix from azimuth and elevation angles.
60
+
61
+ Parameters:
62
+ - azimuth_deg: Azimuth angle in degrees.
63
+ - elevation_deg: Elevation angle in degrees.
64
+ - distance: Distance from the target point.
65
+ - target: The point the camera is looking at in world coordinates.
66
+
67
+ Returns:
68
+ - C2W: A 4x4 NumPy array representing the Camera-to-World transformation matrix.
69
+ """
70
+ # Convert angles from degrees to radians
71
+ azimuth = np.deg2rad(azimuth_deg)
72
+ elevation = np.deg2rad(elevation_deg)
73
+
74
+ # Spherical to Cartesian conversion for camera position
75
+ x = distance * np.cos(elevation) * np.cos(azimuth)
76
+ y = distance * np.cos(elevation) * np.sin(azimuth)
77
+ z = distance * np.sin(elevation)
78
+ camera_position = np.array([x, y, z])
79
+
80
+ # Define the forward vector (from camera to target)
81
+ target = 2*camera_position - target
82
+ forward = target - camera_position
83
+ forward /= np.linalg.norm(forward)
84
+
85
+ # Define the world up vector
86
+ world_up = np.array([0, 0, 1])
87
+
88
+ # Compute the right vector
89
+ right = np.cross(world_up, forward)
90
+ if np.linalg.norm(right) < 1e-6:
91
+ # Handle the singularity when forward is parallel to world_up
92
+ world_up = np.array([0, 1, 0])
93
+ right = np.cross(world_up, forward)
94
+ right /= np.linalg.norm(right)
95
+
96
+ # Recompute the orthogonal up vector
97
+ up = np.cross(forward, right)
98
+
99
+ # Construct the rotation matrix
100
+ rotation = np.vstack([right, up, forward]).T # 3x3
101
+
102
+ # Construct the full C2W matrix
103
+ C2W = np.eye(4)
104
+ C2W[:3, :3] = rotation
105
+ C2W[:3, 3] = camera_position
106
+
107
+ return C2W
108
+
109
+ @dataclass
110
+ class OneDiffusionPipelineOutput(BaseOutput):
111
+ """
112
+ Output class for Stable Diffusion pipelines.
113
+
114
+ Args:
115
+ images (`List[PIL.Image.Image]` or `np.ndarray`)
116
+ List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
117
+ num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
118
+ """
119
+
120
+ images: Union[List[Image.Image], np.ndarray]
121
+ latents: Optional[torch.Tensor] = None
122
+
123
+
124
+ def retrieve_latents(
125
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
126
+ ):
127
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
128
+ return encoder_output.latent_dist.sample(generator)
129
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
130
+ return encoder_output.latent_dist.mode()
131
+ elif hasattr(encoder_output, "latents"):
132
+ return encoder_output.latents
133
+ else:
134
+ raise AttributeError("Could not access latents of provided encoder_output")
135
+
136
+
137
+ def calculate_shift(
138
+ image_seq_len,
139
+ base_seq_len: int = 256,
140
+ max_seq_len: int = 4096,
141
+ base_shift: float = 0.5,
142
+ max_shift: float = 1.16,
143
+ # max_clip: float = 1.5,
144
+ ):
145
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len) # 0.000169270833
146
+ b = base_shift - m * base_seq_len # 0.5-0.0433333332
147
+ mu = image_seq_len * m + b
148
+ # mu = min(mu, max_clip)
149
+ return mu
150
+
151
+
152
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
153
+ def retrieve_timesteps(
154
+ scheduler,
155
+ num_inference_steps: Optional[int] = None,
156
+ device: Optional[Union[str, torch.device]] = None,
157
+ timesteps: Optional[List[int]] = None,
158
+ sigmas: Optional[List[float]] = None,
159
+ **kwargs,
160
+ ):
161
+ """
162
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
163
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
164
+
165
+ Args:
166
+ scheduler (`SchedulerMixin`):
167
+ The scheduler to get timesteps from.
168
+ num_inference_steps (`int`):
169
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
170
+ must be `None`.
171
+ device (`str` or `torch.device`, *optional*):
172
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
173
+ timesteps (`List[int]`, *optional*):
174
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
175
+ `num_inference_steps` and `sigmas` must be `None`.
176
+ sigmas (`List[float]`, *optional*):
177
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
178
+ `num_inference_steps` and `timesteps` must be `None`.
179
+
180
+ Returns:
181
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
182
+ second element is the number of inference steps.
183
+ """
184
+ if timesteps is not None and sigmas is not None:
185
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
186
+ if timesteps is not None:
187
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
188
+ if not accepts_timesteps:
189
+ raise ValueError(
190
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
191
+ f" timestep schedules. Please check whether you are using the correct scheduler."
192
+ )
193
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
194
+ timesteps = scheduler.timesteps
195
+ num_inference_steps = len(timesteps)
196
+ elif sigmas is not None:
197
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
198
+ if not accept_sigmas:
199
+ raise ValueError(
200
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
201
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
202
+ )
203
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
204
+ timesteps = scheduler.timesteps
205
+ num_inference_steps = len(timesteps)
206
+ else:
207
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
208
+ timesteps = scheduler.timesteps
209
+ return timesteps, num_inference_steps
210
+
211
+
212
+
213
+ class OneDiffusionPipeline(DiffusionPipeline):
214
+ r"""
215
+ Pipeline for text-to-image generation using OneDiffuser.
216
+
217
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
218
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
219
+
220
+ Args:
221
+ transformer ([`NextDiT`]):
222
+ Conditional transformer (NextDiT) architecture to denoise the encoded image latents.
223
+ vae ([`AutoencoderKL`]):
224
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
225
+ text_encoder ([`T5EncoderModel`]):
226
+ Frozen text-encoder. OneDiffuser uses the T5 model as text encoder.
227
+ tokenizer (`T5Tokenizer`):
228
+ Tokenizer of class T5Tokenizer.
229
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
230
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
231
+ """
232
+
233
+ def __init__(
234
+ self,
235
+ transformer: NextDiT,
236
+ vae: AutoencoderKL,
237
+ text_encoder: T5EncoderModel,
238
+ tokenizer: T5Tokenizer,
239
+ scheduler: FlowMatchEulerDiscreteScheduler,
240
+ ):
241
+ super().__init__()
242
+ self.register_modules(
243
+ transformer=transformer,
244
+ vae=vae,
245
+ text_encoder=text_encoder,
246
+ tokenizer=tokenizer,
247
+ scheduler=scheduler,
248
+ )
249
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
250
+ self.image_processor = VaeImageProcessorOneDiffuser(vae_scale_factor=self.vae_scale_factor)
251
+
252
+ def enable_vae_slicing(self):
253
+ self.vae.enable_slicing()
254
+
255
+ def disable_vae_slicing(self):
256
+ self.vae.disable_slicing()
257
+
258
+ def enable_sequential_cpu_offload(self, gpu_id=0):
259
+ if is_accelerate_available():
260
+ from accelerate import cpu_offload
261
+ else:
262
+ raise ImportError("Please install accelerate via `pip install accelerate`")
263
+
264
+ device = torch.device(f"cuda:{gpu_id}")
265
+
266
+ for cpu_offloaded_model in [self.transformer, self.text_encoder, self.vae]:
267
+ if cpu_offloaded_model is not None:
268
+ cpu_offload(cpu_offloaded_model, device)
269
+
270
+ @property
271
+ def _execution_device(self):
272
+ if self.device != torch.device("meta") or not hasattr(self.transformer, "_hf_hook"):
273
+ return self.device
274
+ for module in self.transformer.modules():
275
+ if (
276
+ hasattr(module, "_hf_hook")
277
+ and hasattr(module._hf_hook, "execution_device")
278
+ and module._hf_hook.execution_device is not None
279
+ ):
280
+ return torch.device(module._hf_hook.execution_device)
281
+ return self.device
282
+
283
+ def encode_prompt(
284
+ self,
285
+ prompt,
286
+ device,
287
+ num_images_per_prompt,
288
+ do_classifier_free_guidance,
289
+ negative_prompt=None,
290
+ max_length=300,
291
+ ):
292
+ batch_size = len(prompt) if isinstance(prompt, list) else 1
293
+
294
+ text_inputs = self.tokenizer(
295
+ prompt,
296
+ padding="max_length",
297
+ max_length=max_length,
298
+ truncation=True,
299
+ add_special_tokens=True,
300
+ return_tensors="pt",
301
+ )
302
+ text_input_ids = text_inputs.input_ids
303
+ attention_mask = text_inputs.attention_mask
304
+
305
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
306
+
307
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
308
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
309
+ logger.warning(
310
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
311
+ f" {max_length} tokens: {removed_text}"
312
+ )
313
+
314
+ text_encoder_output = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask.to(device))
315
+ prompt_embeds = text_encoder_output[0].to(torch.float32)
316
+
317
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
318
+ bs_embed, seq_len, _ = prompt_embeds.shape
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
320
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
321
+
322
+ # duplicate attention mask for each generation per prompt
323
+ attention_mask = attention_mask.repeat(1, num_images_per_prompt)
324
+ attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, -1)
325
+
326
+ # get unconditional embeddings for classifier free guidance
327
+ if do_classifier_free_guidance:
328
+ uncond_tokens: List[str]
329
+ if negative_prompt is None:
330
+ uncond_tokens = [""] * batch_size
331
+ elif type(prompt) is not type(negative_prompt):
332
+ raise TypeError(
333
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
334
+ f" {type(prompt)}."
335
+ )
336
+ elif isinstance(negative_prompt, str):
337
+ uncond_tokens = [negative_prompt]
338
+ elif batch_size != len(negative_prompt):
339
+ raise ValueError(
340
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
341
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
342
+ " the batch size of `prompt`."
343
+ )
344
+ else:
345
+ uncond_tokens = negative_prompt
346
+
347
+ max_length = text_input_ids.shape[-1]
348
+ uncond_input = self.tokenizer(
349
+ uncond_tokens,
350
+ padding="max_length",
351
+ max_length=max_length,
352
+ truncation=True,
353
+ return_tensors="pt",
354
+ )
355
+
356
+ uncond_encoder_output = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device))
357
+ negative_prompt_embeds = uncond_encoder_output[0].to(torch.float32)
358
+
359
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
360
+ seq_len = negative_prompt_embeds.shape[1]
361
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
362
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
363
+
364
+ # duplicate unconditional attention mask for each generation per prompt
365
+ uncond_attention_mask = uncond_input.attention_mask.repeat(1, num_images_per_prompt)
366
+ uncond_attention_mask = uncond_attention_mask.view(batch_size * num_images_per_prompt, -1)
367
+
368
+ # For classifier free guidance, we need to do two forward passes.
369
+ # Here we concatenate the unconditional and text embeddings into a single batch
370
+ # to avoid doing two forward passes
371
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
372
+ attention_mask = torch.cat([uncond_attention_mask, attention_mask])
373
+
374
+ return prompt_embeds.to(device), attention_mask.to(device)
375
+
376
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
377
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
378
+ if isinstance(generator, list) and len(generator) != batch_size:
379
+ raise ValueError(
380
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
381
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
382
+ )
383
+
384
+ if latents is None:
385
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
386
+ else:
387
+ latents = latents.to(device)
388
+
389
+ # scale the initial noise by the standard deviation required by the scheduler
390
+ latents = latents * self.scheduler.init_noise_sigma
391
+ return latents
392
+
393
+ @torch.no_grad()
394
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
395
+ def __call__(
396
+ self,
397
+ prompt: Union[str, List[str]] = None,
398
+ height: Optional[int] = None,
399
+ width: Optional[int] = None,
400
+ num_inference_steps: int = 50,
401
+ guidance_scale: float = 5.0,
402
+ negative_prompt: Optional[Union[str, List[str]]] = None,
403
+ num_images_per_prompt: Optional[int] = 1,
404
+ eta: float = 0.0,
405
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
406
+ latents: Optional[torch.FloatTensor] = None,
407
+ output_type: Optional[str] = "pil",
408
+ return_dict: bool = True,
409
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
410
+ callback_steps: int = 1,
411
+ forward_kwargs: Optional[Dict[str, Any]] = {},
412
+ **kwargs,
413
+ ):
414
+ r"""
415
+ Function invoked when calling the pipeline for generation.
416
+
417
+ Args:
418
+ prompt (`str` or `List[str]`, *optional*):
419
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
420
+ height (`int`, *optional*, defaults to self.transformer.config.sample_size):
421
+ The height in pixels of the generated image.
422
+ width (`int`, *optional*, defaults to self.transformer.config.sample_size):
423
+ The width in pixels of the generated image.
424
+ num_inference_steps (`int`, *optional*, defaults to 50):
425
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
426
+ expense of slower inference.
427
+ guidance_scale (`float`, *optional*, defaults to 7.5):
428
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
429
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
430
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
431
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
432
+ usually at the expense of lower image quality.
433
+ negative_prompt (`str` or `List[str]`, *optional*):
434
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
435
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
436
+ less than `1`).
437
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
438
+ The number of images to generate per prompt.
439
+ eta (`float`, *optional*, defaults to 0.0):
440
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
441
+ [`schedulers.DDIMScheduler`], will be ignored for others.
442
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
443
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
444
+ to make generation deterministic.
445
+ latents (`torch.FloatTensor`, *optional*):
446
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
447
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
448
+ tensor will ge generated by sampling using the supplied random `generator`.
449
+ output_type (`str`, *optional*, defaults to `"pil"`):
450
+ The output format of the generate image. Choose between
451
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
452
+ return_dict (`bool`, *optional*, defaults to `True`):
453
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
454
+ plain tuple.
455
+ callback (`Callable`, *optional*):
456
+ A function that will be called every `callback_steps` steps during inference. The function will be
457
+ called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
458
+ callback_steps (`int`, *optional*, defaults to 1):
459
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
460
+ called at every step.
461
+
462
+ Examples:
463
+
464
+ Returns:
465
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
466
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
467
+ When returning a tuple, the first element is a list with the generated images, and the second element is a
468
+ list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
469
+ (nsfw) content, according to the `safety_checker`.
470
+ """
471
+ height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
472
+ width = width or self.transformer.config.input_size[-1] * 8
473
+
474
+ # check inputs. Raise error if not correct
475
+ self.check_inputs(prompt, height, width, callback_steps)
476
+
477
+ # define call parameters
478
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
479
+ device = self._execution_device
480
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
481
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf
482
+ do_classifier_free_guidance = guidance_scale > 1.0
483
+
484
+ encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
485
+ prompt,
486
+ device,
487
+ num_images_per_prompt,
488
+ do_classifier_free_guidance,
489
+ negative_prompt,
490
+ )
491
+
492
+ # set timesteps
493
+ # # self.scheduler.set_timesteps(num_inference_steps, device=device)
494
+ # timesteps = self.scheduler.timesteps
495
+ timesteps = None
496
+
497
+ # prepare latent variables
498
+ num_channels_latents = self.transformer.config.in_channels
499
+ latents = self.prepare_latents(
500
+ batch_size * num_images_per_prompt,
501
+ num_channels_latents,
502
+ height,
503
+ width,
504
+ self.dtype,
505
+ device,
506
+ generator,
507
+ latents,
508
+ )
509
+
510
+ # prepare extra step kwargs
511
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
512
+
513
+ # 5. Prepare timesteps
514
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
515
+ image_seq_len = latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
516
+ mu = calculate_shift(
517
+ image_seq_len,
518
+ self.scheduler.config.base_image_seq_len,
519
+ self.scheduler.config.max_image_seq_len,
520
+ self.scheduler.config.base_shift,
521
+ self.scheduler.config.max_shift,
522
+ )
523
+ timesteps, num_inference_steps = retrieve_timesteps(
524
+ self.scheduler,
525
+ num_inference_steps,
526
+ device,
527
+ timesteps,
528
+ sigmas,
529
+ mu=mu,
530
+ )
531
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
532
+ self._num_timesteps = len(timesteps)
533
+
534
+ # denoising loop
535
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
536
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
537
+ for i, t in enumerate(timesteps):
538
+ # expand the latents if we are doing classifier free guidance
539
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
540
+ # latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
541
+
542
+ # predict the noise residual
543
+ noise_pred = self.transformer(
544
+ samples=latent_model_input.to(self.dtype),
545
+ timesteps=torch.tensor([t] * latent_model_input.shape[0], device=device),
546
+ encoder_hidden_states=encoder_hidden_states.to(self.dtype),
547
+ encoder_attention_mask=encoder_attention_mask,
548
+ **forward_kwargs
549
+ )
550
+
551
+ # perform guidance
552
+ if do_classifier_free_guidance:
553
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
554
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
555
+
556
+ # compute the previous noisy sample x_t -> x_t-1
557
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
558
+
559
+ # call the callback, if provided
560
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
561
+ progress_bar.update()
562
+ if callback is not None and i % callback_steps == 0:
563
+ callback(i, t, latents)
564
+
565
+ # scale and decode the image latents with vae
566
+ latents = 1 / self.vae.config.scaling_factor * latents
567
+ if latents.ndim == 5:
568
+ latents = latents.squeeze(1)
569
+ image = self.vae.decode(latents.to(self.vae.dtype)).sample
570
+
571
+ image = (image / 2 + 0.5).clamp(0, 1)
572
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
573
+
574
+ if output_type == "pil":
575
+ image = self.numpy_to_pil(image)
576
+
577
+ if not return_dict:
578
+ return (image, None)
579
+
580
+ return OneDiffusionPipelineOutput(images=image)
581
+
582
+ @torch.no_grad()
583
+ def img2img(
584
+ self,
585
+ prompt: Union[str, List[str]] = None,
586
+ image: Union[PIL.Image.Image, List[PIL.Image.Image]] = None,
587
+ height: Optional[int] = None,
588
+ width: Optional[int] = None,
589
+ num_inference_steps: int = 50,
590
+ guidance_scale: float = 5.0,
591
+ denoise_mask: Optional[List[int]] = [1, 0],
592
+ negative_prompt: Optional[Union[str, List[str]]] = None,
593
+ num_images_per_prompt: Optional[int] = 1,
594
+ eta: float = 0.0,
595
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
596
+ latents: Optional[torch.FloatTensor] = None,
597
+ output_type: Optional[str] = "pil",
598
+ return_dict: bool = True,
599
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
600
+ callback_steps: int = 1,
601
+ do_crop: bool = True,
602
+ is_multiview: bool = False,
603
+ multiview_azimuths: Optional[List[int]] = [0, 30, 60, 90],
604
+ multiview_elevations: Optional[List[int]] = [0, 0, 0, 0],
605
+ multiview_distances: float = 1.7,
606
+ multiview_c2ws: Optional[List[torch.Tensor]] = None,
607
+ multiview_intrinsics: Optional[torch.Tensor] = None,
608
+ multiview_focal_length: float = 1.3887,
609
+ forward_kwargs: Optional[Dict[str, Any]] = {},
610
+ noise_scale: float = 1.0,
611
+ **kwargs,
612
+ ):
613
+ # Convert single image to list for consistent handling
614
+ if isinstance(image, PIL.Image.Image):
615
+ image = [image]
616
+
617
+ if height is None or width is None:
618
+ closest_ar = get_closest_ratio(height=image[0].size[1], width=image[0].size[0], ratios=ASPECT_RATIO_512)
619
+ height, width = int(closest_ar[0][0]), int(closest_ar[0][1])
620
+
621
+ if not isinstance(multiview_distances, list) and not isinstance(multiview_distances, tuple):
622
+ multiview_distances = [multiview_distances] * len(multiview_azimuths)
623
+
624
+ # height = height or self.transformer.config.input_size[-2] * 8 # TODO: Hardcoded downscale factor of vae
625
+ # width = width or self.transformer.config.input_size[-1] * 8
626
+
627
+ # 1. check inputs. Raise error if not correct
628
+ self.check_inputs(prompt, height, width, callback_steps)
629
+
630
+ # Additional input validation for image list
631
+ if not all(isinstance(img, PIL.Image.Image) for img in image):
632
+ raise ValueError("All elements in image list must be PIL.Image objects")
633
+
634
+ # 2. define call parameters
635
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
636
+ device = self._execution_device
637
+ do_classifier_free_guidance = guidance_scale > 1.0
638
+
639
+ # 3. Encode input prompt
640
+ encoder_hidden_states, encoder_attention_mask = self.encode_prompt(
641
+ prompt,
642
+ device,
643
+ num_images_per_prompt,
644
+ do_classifier_free_guidance,
645
+ negative_prompt,
646
+ )
647
+
648
+ # 4. Preprocess all images
649
+ if image is not None and len(image) > 0:
650
+ processed_image = self.image_processor.preprocess(image, height=height, width=width, do_crop=do_crop)
651
+ else:
652
+ processed_image = None
653
+
654
+ # # Stack processed images along the sequence dimension
655
+ # if len(processed_images) > 1:
656
+ # processed_image = torch.cat(processed_images, dim=0)
657
+ # else:
658
+ # processed_image = processed_images[0]
659
+
660
+ timesteps = None
661
+
662
+ # 6. prepare latent variables
663
+ num_channels_latents = self.transformer.config.in_channels
664
+ if processed_image is not None:
665
+ cond_latents = self.prepare_latents(
666
+ batch_size * num_images_per_prompt,
667
+ num_channels_latents,
668
+ height,
669
+ width,
670
+ self.dtype,
671
+ device,
672
+ generator,
673
+ latents,
674
+ image=processed_image,
675
+ )
676
+ else:
677
+ cond_latents = None
678
+
679
+ # 7. prepare extra step kwargs
680
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
681
+ denoise_mask = torch.tensor(denoise_mask, device=device)
682
+ denoise_indices = torch.where(denoise_mask == 1)[0]
683
+ cond_indices = torch.where(denoise_mask == 0)[0]
684
+ seq_length = denoise_mask.shape[0]
685
+
686
+ latents = self.prepare_init_latents(
687
+ batch_size * num_images_per_prompt,
688
+ seq_length,
689
+ num_channels_latents,
690
+ height,
691
+ width,
692
+ self.dtype,
693
+ device,
694
+ generator,
695
+ )
696
+
697
+ # 5. Prepare timesteps
698
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
699
+ # image_seq_len = latents.shape[1] * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
700
+ image_seq_len = noise_scale * sum(denoise_mask) * latents.shape[-1] * latents.shape[-2] / self.transformer.config.patch_size[-1] / self.transformer.config.patch_size[-2]
701
+ # image_seq_len = 256
702
+ mu = calculate_shift(
703
+ image_seq_len,
704
+ self.scheduler.config.base_image_seq_len,
705
+ self.scheduler.config.max_image_seq_len,
706
+ self.scheduler.config.base_shift,
707
+ self.scheduler.config.max_shift,
708
+ )
709
+ timesteps, num_inference_steps = retrieve_timesteps(
710
+ self.scheduler,
711
+ num_inference_steps,
712
+ device,
713
+ timesteps,
714
+ sigmas,
715
+ mu=mu,
716
+ )
717
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
718
+ self._num_timesteps = len(timesteps)
719
+
720
+ if is_multiview:
721
+ cond_indices_images = [index // 2 for index in cond_indices if index % 2 == 0]
722
+ cond_indices_rays = [index // 2 for index in cond_indices if index % 2 == 1]
723
+
724
+ multiview_elevations = [element for element in multiview_elevations if element is not None]
725
+ multiview_azimuths = [element for element in multiview_azimuths if element is not None]
726
+ multiview_distances = [element for element in multiview_distances if element is not None]
727
+
728
+ if multiview_c2ws is None:
729
+ multiview_c2ws = [
730
+ torch.tensor(create_c2w_matrix(azimuth, elevation, distance)) for azimuth, elevation, distance in zip(multiview_azimuths, multiview_elevations, multiview_distances)
731
+ ]
732
+ c2ws = torch.stack(multiview_c2ws).float()
733
+ else:
734
+ c2ws = torch.Tensor(multiview_c2ws).float()
735
+
736
+ c2ws[:, 0:3, 1:3] *= -1
737
+ c2ws = c2ws[:, [1, 0, 2, 3], :]
738
+ c2ws[:, 2, :] *= -1
739
+
740
+ w2cs = torch.inverse(c2ws)
741
+ if multiview_intrinsics is None:
742
+ multiview_intrinsics = torch.Tensor([[[multiview_focal_length, 0, 0.5], [0, multiview_focal_length, 0.5], [0, 0, 1]]]).repeat(c2ws.shape[0], 1, 1)
743
+ K = multiview_intrinsics
744
+ Rs = w2cs[:, :3, :3]
745
+ Ts = w2cs[:, :3, 3]
746
+ sizes = torch.Tensor([[1, 1]]).repeat(c2ws.shape[0], 1)
747
+
748
+ assert height == width
749
+ cond_rays = calculate_rays(K, sizes, Rs, Ts, height // 8)
750
+ cond_rays = cond_rays.reshape(-1, height // 8, width // 8, 6)
751
+ # padding = (0, 10)
752
+ # cond_rays = torch.nn.functional.pad(cond_rays, padding, "constant", 0)
753
+ cond_rays = torch.cat([cond_rays, cond_rays, cond_rays[..., :4]], dim=-1) * 1.658
754
+ cond_rays = cond_rays[None].repeat(batch_size * num_images_per_prompt, 1, 1, 1, 1)
755
+ cond_rays = cond_rays.permute(0, 1, 4, 2, 3)
756
+ cond_rays = cond_rays.to(device, dtype=self.dtype)
757
+
758
+ latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
759
+ if cond_latents is not None:
760
+ latents[:, cond_indices_images, 0] = cond_latents
761
+ latents[:, cond_indices_rays, 1] = cond_rays
762
+ latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
763
+ else:
764
+ if cond_latents is not None:
765
+ latents[:, cond_indices] = cond_latents
766
+
767
+ # denoising loop
768
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
769
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
770
+ for i, t in enumerate(timesteps):
771
+ # expand the latents if we are doing classifier free guidance
772
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
773
+ input_t = torch.broadcast_to(einops.repeat(torch.Tensor([t]).to(device), "1 -> 1 f 1 1 1", f=latent_model_input.shape[1]), latent_model_input.shape).clone()
774
+
775
+ if is_multiview:
776
+ input_t = einops.rearrange(input_t, "b (f n) c h w -> b f n c h w", n=2)
777
+ input_t[:, cond_indices_images, 0] = self.scheduler.timesteps[-1]
778
+ input_t[:, cond_indices_rays, 1] = self.scheduler.timesteps[-1]
779
+ input_t = einops.rearrange(input_t, "b f n c h w -> b (f n) c h w")
780
+ else:
781
+ input_t[:, cond_indices] = self.scheduler.timesteps[-1]
782
+
783
+ # predict the noise residual
784
+ noise_pred = self.transformer(
785
+ samples=latent_model_input.to(self.dtype),
786
+ timesteps=input_t,
787
+ encoder_hidden_states=encoder_hidden_states.to(self.dtype),
788
+ encoder_attention_mask=encoder_attention_mask,
789
+ **forward_kwargs
790
+ )
791
+
792
+ # perform guidance
793
+ if do_classifier_free_guidance:
794
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
795
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
796
+
797
+ # compute the previous noisy sample x_t -> x_t-1
798
+ bs, n_frame = noise_pred.shape[:2]
799
+ noise_pred = einops.rearrange(noise_pred, "b f c h w -> (b f) c h w")
800
+ latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
801
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
802
+ latents = einops.rearrange(latents, "(b f) c h w -> b f c h w", b=bs, f=n_frame)
803
+ if is_multiview:
804
+ latents = einops.rearrange(latents, "b (f n) c h w -> b f n c h w", n=2)
805
+ if cond_latents is not None:
806
+ latents[:, cond_indices_images, 0] = cond_latents
807
+ latents[:, cond_indices_rays, 1] = cond_rays
808
+ latents = einops.rearrange(latents, "b f n c h w -> b (f n) c h w")
809
+ else:
810
+ if cond_latents is not None:
811
+ latents[:, cond_indices] = cond_latents
812
+
813
+ # call the callback, if provided
814
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
815
+ progress_bar.update()
816
+ if callback is not None and i % callback_steps == 0:
817
+ callback(i, t, latents)
818
+
819
+ decoded_latents = latents / 1.658
820
+ # scale and decode the image latents with vae
821
+ latents = 1 / self.vae.config.scaling_factor * latents
822
+ if latents.ndim == 5:
823
+ latents = latents[:, denoise_indices]
824
+ latents = einops.rearrange(latents, "b f c h w -> (b f) c h w")
825
+ image = self.vae.decode(latents.to(self.vae.dtype)).sample
826
+
827
+ image = (image / 2 + 0.5).clamp(0, 1)
828
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
829
+
830
+ if output_type == "pil":
831
+ image = self.numpy_to_pil(image)
832
+
833
+ if not return_dict:
834
+ return (image, None)
835
+
836
+ return OneDiffusionPipelineOutput(images=image, latents=decoded_latents)
837
+
838
+ def prepare_extra_step_kwargs(self, generator, eta):
839
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
840
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
841
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
842
+ # and should be between [0, 1]
843
+
844
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
845
+ extra_step_kwargs = {}
846
+ if accepts_eta:
847
+ extra_step_kwargs["eta"] = eta
848
+
849
+ # check if the scheduler accepts generator
850
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
851
+ if accepts_generator:
852
+ extra_step_kwargs["generator"] = generator
853
+ return extra_step_kwargs
854
+
855
+ def check_inputs(self, prompt, height, width, callback_steps):
856
+ if not isinstance(prompt, str) and not isinstance(prompt, list):
857
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
858
+
859
+ if height % 16 != 0 or width % 16 != 0:
860
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
861
+
862
+ if (callback_steps is None) or (
863
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
864
+ ):
865
+ raise ValueError(
866
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
867
+ f" {type(callback_steps)}."
868
+ )
869
+
870
+ def get_timesteps(self, num_inference_steps, strength, device):
871
+ # get the original timestep using init_timestep
872
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
873
+
874
+ t_start = max(num_inference_steps - init_timestep, 0)
875
+ timesteps = self.scheduler.timesteps[t_start:]
876
+
877
+ return timesteps, num_inference_steps - t_start
878
+
879
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, image=None):
880
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
881
+ if isinstance(generator, list) and len(generator) != batch_size:
882
+ raise ValueError(
883
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
884
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
885
+ )
886
+
887
+ if latents is None:
888
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
889
+ else:
890
+ latents = latents.to(device)
891
+
892
+ if image is None:
893
+ # scale the initial noise by the standard deviation required by the scheduler
894
+ # latents = latents * self.scheduler.init_noise_sigma
895
+ return latents
896
+
897
+ image = image.to(device=device, dtype=dtype)
898
+
899
+ if isinstance(generator, list) and len(generator) != batch_size:
900
+ raise ValueError(
901
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
902
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
903
+ )
904
+ elif isinstance(generator, list):
905
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
906
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
907
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
908
+ raise ValueError(
909
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
910
+ )
911
+ init_latents = [
912
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
913
+ for i in range(batch_size)
914
+ ]
915
+ init_latents = torch.cat(init_latents, dim=0)
916
+ else:
917
+ init_latents = retrieve_latents(self.vae.encode(image.to(self.vae.dtype)), generator=generator)
918
+
919
+ init_latents = self.vae.config.scaling_factor * init_latents
920
+ init_latents = init_latents.to(device=device, dtype=dtype)
921
+
922
+ init_latents = einops.rearrange(init_latents, "(bs views) c h w -> bs views c h w", bs=batch_size, views=init_latents.shape[0]//batch_size)
923
+ # latents = einops.rearrange(latents, "b c h w -> b 1 c h w")
924
+ # latents = torch.concat([latents, init_latents], dim=1)
925
+ return init_latents
926
+
927
+ def prepare_init_latents(self, batch_size, seq_length, num_channels_latents, height, width, dtype, device, generator, latents=None):
928
+ shape = (batch_size, seq_length, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
929
+ if isinstance(generator, list) and len(generator) != batch_size:
930
+ raise ValueError(
931
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
932
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
933
+ )
934
+
935
+ if latents is None:
936
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
937
+ else:
938
+ latents = latents.to(device)
939
+
940
+ return latents
941
+
942
+ @torch.no_grad()
943
+ def generate(
944
+ self,
945
+ prompt: Union[str, List[str]],
946
+ num_inference_steps: int = 50,
947
+ guidance_scale: float = 5.0,
948
+ negative_prompt: Optional[Union[str, List[str]]] = None,
949
+ num_images_per_prompt: Optional[int] = 1,
950
+ height: Optional[int] = None,
951
+ width: Optional[int] = None,
952
+ eta: float = 0.0,
953
+ generator: Optional[torch.Generator] = None,
954
+ latents: Optional[torch.FloatTensor] = None,
955
+ output_type: Optional[str] = "pil",
956
+ return_dict: bool = True,
957
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
958
+ callback_steps: Optional[int] = 1,
959
+ ):
960
+ """
961
+ Function for image generation using the OneDiffusionPipeline.
962
+ """
963
+ return self(
964
+ prompt=prompt,
965
+ num_inference_steps=num_inference_steps,
966
+ guidance_scale=guidance_scale,
967
+ negative_prompt=negative_prompt,
968
+ num_images_per_prompt=num_images_per_prompt,
969
+ height=height,
970
+ width=width,
971
+ eta=eta,
972
+ generator=generator,
973
+ latents=latents,
974
+ output_type=output_type,
975
+ return_dict=return_dict,
976
+ callback=callback,
977
+ callback_steps=callback_steps,
978
+ )
979
+
980
+ @staticmethod
981
+ def numpy_to_pil(images):
982
+ """
983
+ Convert a numpy image or a batch of images to a PIL image.
984
+ """
985
+ if images.ndim == 3:
986
+ images = images[None, ...]
987
+ images = (images * 255).round().astype("uint8")
988
+ if images.shape[-1] == 1:
989
+ # special case for grayscale (single channel) images
990
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
991
+ else:
992
+ pil_images = [Image.fromarray(image) for image in images]
993
+
994
+ return pil_images
995
+
996
+ @classmethod
997
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
998
+ model_path = pretrained_model_name_or_path
999
+ cache_dir = kwargs.pop("cache_dir", None)
1000
+ force_download = kwargs.pop("force_download", False)
1001
+ proxies = kwargs.pop("proxies", None)
1002
+ local_files_only = kwargs.pop("local_files_only", None)
1003
+ token = kwargs.pop("token", None)
1004
+ revision = kwargs.pop("revision", None)
1005
+ from_flax = kwargs.pop("from_flax", False)
1006
+ torch_dtype = kwargs.pop("torch_dtype", None)
1007
+ custom_pipeline = kwargs.pop("custom_pipeline", None)
1008
+ custom_revision = kwargs.pop("custom_revision", None)
1009
+ provider = kwargs.pop("provider", None)
1010
+ sess_options = kwargs.pop("sess_options", None)
1011
+ device_map = kwargs.pop("device_map", None)
1012
+ max_memory = kwargs.pop("max_memory", None)
1013
+ offload_folder = kwargs.pop("offload_folder", None)
1014
+ offload_state_dict = kwargs.pop("offload_state_dict", False)
1015
+ low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
1016
+ variant = kwargs.pop("variant", None)
1017
+ use_safetensors = kwargs.pop("use_safetensors", None)
1018
+ use_onnx = kwargs.pop("use_onnx", None)
1019
+ load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1020
+
1021
+ if low_cpu_mem_usage and not is_accelerate_available():
1022
+ low_cpu_mem_usage = False
1023
+ logger.warning(
1024
+ "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
1025
+ " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
1026
+ " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
1027
+ " install accelerate\n```\n."
1028
+ )
1029
+
1030
+ if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
1031
+ raise NotImplementedError(
1032
+ "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
1033
+ " `low_cpu_mem_usage=False`."
1034
+ )
1035
+
1036
+ if device_map is not None and not is_torch_version(">=", "1.9.0"):
1037
+ raise NotImplementedError(
1038
+ "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
1039
+ " `device_map=None`."
1040
+ )
1041
+
1042
+ if device_map is not None and not is_accelerate_available():
1043
+ raise NotImplementedError(
1044
+ "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
1045
+ )
1046
+
1047
+ if device_map is not None and not isinstance(device_map, str):
1048
+ raise ValueError("`device_map` must be a string.")
1049
+
1050
+ if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
1051
+ raise NotImplementedError(
1052
+ f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
1053
+ )
1054
+
1055
+ if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
1056
+ if is_accelerate_version("<", "0.28.0"):
1057
+ raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")
1058
+
1059
+ if low_cpu_mem_usage is False and device_map is not None:
1060
+ raise ValueError(
1061
+ f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
1062
+ " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
1063
+ )
1064
+
1065
+ transformer = NextDiT.from_pretrained(f"{model_path}", subfolder="transformer", torch_dtype=torch.float32, cache_dir=cache_dir)
1066
+ vae = AutoencoderKL.from_pretrained(f"{model_path}", subfolder="vae", cache_dir=cache_dir)
1067
+ text_encoder = T5EncoderModel.from_pretrained(f"{model_path}", subfolder="text_encoder", torch_dtype=torch.float16, cache_dir=cache_dir)
1068
+ tokenizer = T5Tokenizer.from_pretrained(model_path, subfolder="tokenizer", cache_dir=cache_dir)
1069
+ scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler", cache_dir=cache_dir)
1070
+
1071
+ pipeline = cls(
1072
+ transformer=transformer,
1073
+ vae=vae,
1074
+ text_encoder=text_encoder,
1075
+ tokenizer=tokenizer,
1076
+ scheduler=scheduler,
1077
+ **kwargs
1078
+ )
1079
+
1080
+ return pipeline
models/denoiser/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from . import (
2
+ nextdit
3
+ )
models/denoiser/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (191 Bytes). View file
 
models/denoiser/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (200 Bytes). View file
 
models/denoiser/nextdit/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .modeling_nextdit import NextDiT
models/denoiser/nextdit/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (215 Bytes). View file
 
models/denoiser/nextdit/__pycache__/__init__.cpython-312.pyc ADDED
Binary file (222 Bytes). View file
 
models/denoiser/nextdit/__pycache__/layers.cpython-310.pyc ADDED
Binary file (4.69 kB). View file
 
models/denoiser/nextdit/__pycache__/layers.cpython-312.pyc ADDED
Binary file (7.97 kB). View file
 
models/denoiser/nextdit/__pycache__/modeling_nextdit.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
models/denoiser/nextdit/__pycache__/modeling_nextdit.cpython-312.pyc ADDED
Binary file (27.3 kB). View file
 
models/denoiser/nextdit/layers.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+ from typing import Callable, Optional
6
+
7
+ import warnings
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+
12
+ try:
13
+ from apex.normalization import FusedRMSNorm as RMSNorm
14
+ except ImportError:
15
+ warnings.warn("Cannot import apex RMSNorm, switch to vanilla implementation")
16
+
17
+
18
+ class RMSNorm(torch.nn.Module):
19
+ def __init__(self, dim: int, eps: float = 1e-6):
20
+ """
21
+ Initialize the RMSNorm normalization layer.
22
+ Args:
23
+ dim (int): The dimension of the input tensor.
24
+ eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
25
+ Attributes:
26
+ eps (float): A small value added to the denominator for numerical stability.
27
+ weight (nn.Parameter): Learnable scaling parameter.
28
+ """
29
+ super().__init__()
30
+ self.eps = eps
31
+ self.weight = nn.Parameter(torch.ones(dim))
32
+
33
+ def _norm(self, x):
34
+ """
35
+ Apply the RMSNorm normalization to the input tensor.
36
+ Args:
37
+ x (torch.Tensor): The input tensor.
38
+ Returns:
39
+ torch.Tensor: The normalized tensor.
40
+ """
41
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
42
+
43
+ def forward(self, x):
44
+ """
45
+ Forward pass through the RMSNorm layer.
46
+ Args:
47
+ x (torch.Tensor): The input tensor.
48
+ Returns:
49
+ torch.Tensor: The output tensor after applying RMSNorm.
50
+ """
51
+ output = self._norm(x.float()).type_as(x)
52
+ return output * self.weight
53
+
54
+
55
+ def modulate(x, scale):
56
+ return x * (1 + scale.unsqueeze(1))
57
+
58
+ class LLamaFeedForward(nn.Module):
59
+ """
60
+ Corresponds to the FeedForward layer in Next DiT.
61
+ """
62
+ def __init__(
63
+ self,
64
+ dim: int,
65
+ hidden_dim: int,
66
+ multiple_of: int,
67
+ ffn_dim_multiplier: Optional[float] = None,
68
+ zeros_initialize: bool = True,
69
+ dtype: torch.dtype = torch.float32,
70
+ ):
71
+ super().__init__()
72
+ self.dim = dim
73
+ self.hidden_dim = hidden_dim
74
+ self.multiple_of = multiple_of
75
+ self.ffn_dim_multiplier = ffn_dim_multiplier
76
+ self.zeros_initialize = zeros_initialize
77
+ self.dtype = dtype
78
+
79
+ # Compute hidden_dim based on the given formula
80
+ hidden_dim_calculated = int(2 * self.hidden_dim / 3)
81
+ if self.ffn_dim_multiplier is not None:
82
+ hidden_dim_calculated = int(self.ffn_dim_multiplier * hidden_dim_calculated)
83
+ hidden_dim_calculated = self.multiple_of * ((hidden_dim_calculated + self.multiple_of - 1) // self.multiple_of)
84
+
85
+ # Define linear layers
86
+ self.w1 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
87
+ self.w2 = nn.Linear(hidden_dim_calculated, self.dim, bias=False)
88
+ self.w3 = nn.Linear(self.dim, hidden_dim_calculated, bias=False)
89
+
90
+ # Initialize weights
91
+ if self.zeros_initialize:
92
+ nn.init.zeros_(self.w2.weight)
93
+ else:
94
+ nn.init.xavier_uniform_(self.w2.weight)
95
+ nn.init.xavier_uniform_(self.w1.weight)
96
+ nn.init.xavier_uniform_(self.w3.weight)
97
+
98
+ def _forward_silu_gating(self, x1, x3):
99
+ return F.silu(x1) * x3
100
+
101
+ def forward(self, x):
102
+ return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
103
+
104
+ class FinalLayer(nn.Module):
105
+ """
106
+ The final layer of Next-DiT.
107
+ """
108
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
109
+ super().__init__()
110
+ self.hidden_size = hidden_size
111
+ self.patch_size = patch_size
112
+ self.out_channels = out_channels
113
+
114
+ # LayerNorm without learnable parameters (elementwise_affine=False)
115
+ self.norm_final = nn.LayerNorm(self.hidden_size, eps=1e-6, elementwise_affine=False)
116
+ self.linear = nn.Linear(self.hidden_size, np.prod(self.patch_size) * self.out_channels, bias=True)
117
+ nn.init.zeros_(self.linear.weight)
118
+ nn.init.zeros_(self.linear.bias)
119
+
120
+ self.adaLN_modulation = nn.Sequential(
121
+ nn.SiLU(),
122
+ nn.Linear(self.hidden_size, self.hidden_size),
123
+ )
124
+ # Initialize the last layer with zeros
125
+ nn.init.zeros_(self.adaLN_modulation[1].weight)
126
+ nn.init.zeros_(self.adaLN_modulation[1].bias)
127
+
128
+ def forward(self, x, c):
129
+ scale = self.adaLN_modulation(c)
130
+ x = modulate(self.norm_final(x), scale)
131
+ x = self.linear(x)
132
+ return x
models/denoiser/nextdit/modeling_nextdit.py ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+ import numpy as np
6
+ import einops
7
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
8
+ from diffusers.models.modeling_utils import ModelMixin
9
+ from typing import Any, Tuple, Optional
10
+ from flash_attn import flash_attn_varlen_func
11
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
12
+
13
+ from .layers import LLamaFeedForward, RMSNorm
14
+
15
+ # import frasch
16
+
17
+
18
+ def modulate(x, scale):
19
+ return x * (1 + scale)
20
+
21
+ class TimestepEmbedder(nn.Module):
22
+ """
23
+ Embeds scalar timesteps into vector representations.
24
+ """
25
+ def __init__(self, hidden_size, frequency_embedding_size=256):
26
+ super().__init__()
27
+ self.hidden_size = hidden_size
28
+ self.frequency_embedding_size = frequency_embedding_size
29
+ self.mlp = nn.Sequential(
30
+ nn.Linear(self.frequency_embedding_size, self.hidden_size),
31
+ nn.SiLU(),
32
+ nn.Linear(self.hidden_size, self.hidden_size),
33
+ )
34
+
35
+ @staticmethod
36
+ def timestep_embedding(t, dim, max_period=10000):
37
+ """
38
+ Create sinusoidal timestep embeddings.
39
+ :param t: a 1-D Tensor of N indices, one per batch element.
40
+ :param dim: the dimension of the output.
41
+ :param max_period: controls the minimum frequency of the embeddings.
42
+ :return: an (N, D) Tensor of positional embeddings.
43
+ """
44
+ half = dim // 2
45
+ freqs = torch.exp(
46
+ -np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
47
+ ).to(t.device)
48
+ args = t[:, :, None] * freqs[None, :]
49
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
50
+ if dim % 2:
51
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
52
+ return embedding
53
+
54
+ def forward(self, t):
55
+ t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
56
+ t_freq = t_freq.to(self.mlp[0].weight.dtype)
57
+ return self.mlp(t_freq)
58
+
59
+ class FinalLayer(nn.Module):
60
+ def __init__(self, hidden_size, num_patches, out_channels):
61
+ super().__init__()
62
+ self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
63
+ self.linear = nn.Linear(hidden_size, num_patches * out_channels)
64
+ self.adaLN_modulation = nn.Sequential(
65
+ nn.SiLU(),
66
+ nn.Linear(min(hidden_size, 1024), hidden_size),
67
+ )
68
+
69
+ def forward(self, x, c):
70
+ scale = self.adaLN_modulation(c)
71
+ x = modulate(self.norm_final(x), scale)
72
+ x = self.linear(x)
73
+ return x
74
+
75
+ class Attention(nn.Module):
76
+ def __init__(
77
+ self,
78
+ dim,
79
+ n_heads,
80
+ n_kv_heads=None,
81
+ qk_norm=False,
82
+ y_dim=0,
83
+ base_seqlen=None,
84
+ proportional_attn=False,
85
+ attention_dropout=0.0,
86
+ max_position_embeddings=384,
87
+ ):
88
+ super().__init__()
89
+ self.dim = dim
90
+ self.n_heads = n_heads
91
+ self.n_kv_heads = n_kv_heads or n_heads
92
+ self.qk_norm = qk_norm
93
+ self.y_dim = y_dim
94
+ self.base_seqlen = base_seqlen
95
+ self.proportional_attn = proportional_attn
96
+ self.attention_dropout = attention_dropout
97
+ self.max_position_embeddings = max_position_embeddings
98
+
99
+ self.head_dim = dim // n_heads
100
+
101
+ self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
102
+ self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
103
+ self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
104
+
105
+ if y_dim > 0:
106
+ self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
107
+ self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
108
+ self.gate = nn.Parameter(torch.zeros(n_heads))
109
+
110
+ self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
111
+
112
+ if qk_norm:
113
+ self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
114
+ self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
115
+ if y_dim > 0:
116
+ self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
117
+ else:
118
+ self.ky_norm = nn.Identity()
119
+ else:
120
+ self.q_norm = nn.Identity()
121
+ self.k_norm = nn.Identity()
122
+ self.ky_norm = nn.Identity()
123
+
124
+
125
+ @staticmethod
126
+ def apply_rotary_emb(xq, xk, freqs_cis):
127
+ # xq, xk: [batch_size, seq_len, n_heads, head_dim]
128
+ # freqs_cis: [1, seq_len, 1, head_dim]
129
+ xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
130
+ xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
131
+
132
+ xq_complex = torch.view_as_complex(xq_)
133
+ xk_complex = torch.view_as_complex(xk_)
134
+
135
+ freqs_cis = freqs_cis.unsqueeze(2)
136
+
137
+ # Apply freqs_cis
138
+ xq_out = xq_complex * freqs_cis
139
+ xk_out = xk_complex * freqs_cis
140
+
141
+ # Convert back to real numbers
142
+ xq_out = torch.view_as_real(xq_out).flatten(-2)
143
+ xk_out = torch.view_as_real(xk_out).flatten(-2)
144
+
145
+ return xq_out.type_as(xq), xk_out.type_as(xk)
146
+
147
+ # copied from huggingface modeling_llama.py
148
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
149
+ def _get_unpad_data(attention_mask):
150
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
151
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
152
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
153
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
154
+ return (
155
+ indices,
156
+ cu_seqlens,
157
+ max_seqlen_in_batch,
158
+ )
159
+
160
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
161
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
162
+
163
+ key_layer = index_first_axis(
164
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
165
+ indices_k,
166
+ )
167
+ value_layer = index_first_axis(
168
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
169
+ indices_k,
170
+ )
171
+ if query_length == kv_seq_len:
172
+ query_layer = index_first_axis(
173
+ query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
174
+ indices_k,
175
+ )
176
+ cu_seqlens_q = cu_seqlens_k
177
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
178
+ indices_q = indices_k
179
+ elif query_length == 1:
180
+ max_seqlen_in_batch_q = 1
181
+ cu_seqlens_q = torch.arange(
182
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
183
+ ) # There is a memcpy here, that is very bad.
184
+ indices_q = cu_seqlens_q[:-1]
185
+ query_layer = query_layer.squeeze(1)
186
+ else:
187
+ # The -q_len: slice assumes left padding.
188
+ attention_mask = attention_mask[:, -query_length:]
189
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
190
+
191
+ return (
192
+ query_layer,
193
+ key_layer,
194
+ value_layer,
195
+ indices_q,
196
+ (cu_seqlens_q, cu_seqlens_k),
197
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
198
+ )
199
+
200
+ def forward(
201
+ self,
202
+ x,
203
+ x_mask,
204
+ freqs_cis,
205
+ y=None,
206
+ y_mask=None,
207
+ init_cache=False,
208
+ ):
209
+ bsz, seqlen, _ = x.size()
210
+ xq = self.wq(x)
211
+ xk = self.wk(x)
212
+ xv = self.wv(x)
213
+
214
+ if x_mask is None:
215
+ x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
216
+ inp_dtype = xq.dtype
217
+
218
+ xq = self.q_norm(xq)
219
+ xk = self.k_norm(xk)
220
+
221
+ xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
222
+ xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
223
+ xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
224
+
225
+ if self.n_kv_heads != self.n_heads:
226
+ n_rep = self.n_heads // self.n_kv_heads
227
+ xk = xk.repeat_interleave(n_rep, dim=2)
228
+ xv = xv.repeat_interleave(n_rep, dim=2)
229
+
230
+ freqs_cis = freqs_cis.to(xq.device)
231
+ xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
232
+
233
+ if inp_dtype in [torch.float16, torch.bfloat16]:
234
+ # begin var_len flash attn
235
+ (
236
+ query_states,
237
+ key_states,
238
+ value_states,
239
+ indices_q,
240
+ cu_seq_lens,
241
+ max_seq_lens,
242
+ ) = self._upad_input(xq, xk, xv, x_mask, seqlen)
243
+
244
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
245
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
246
+
247
+ attn_output_unpad = flash_attn_varlen_func(
248
+ query_states.to(inp_dtype),
249
+ key_states.to(inp_dtype),
250
+ value_states.to(inp_dtype),
251
+ cu_seqlens_q=cu_seqlens_q,
252
+ cu_seqlens_k=cu_seqlens_k,
253
+ max_seqlen_q=max_seqlen_in_batch_q,
254
+ max_seqlen_k=max_seqlen_in_batch_k,
255
+ dropout_p=0.0,
256
+ causal=False,
257
+ softmax_scale=None,
258
+ softcap=30,
259
+ )
260
+ output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
261
+ else:
262
+ output = (
263
+ F.scaled_dot_product_attention(
264
+ xq.permute(0, 2, 1, 3),
265
+ xk.permute(0, 2, 1, 3),
266
+ xv.permute(0, 2, 1, 3),
267
+ attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
268
+ scale=None,
269
+ )
270
+ .permute(0, 2, 1, 3)
271
+ .to(inp_dtype)
272
+ ) #ok
273
+
274
+
275
+ if hasattr(self, "wk_y"):
276
+ yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
277
+ yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
278
+ n_rep = self.n_heads // self.n_kv_heads
279
+ # if n_rep >= 1:
280
+ # yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
281
+ # yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
282
+ if n_rep >= 1:
283
+ yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
284
+ yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
285
+ output_y = F.scaled_dot_product_attention(
286
+ xq.permute(0, 2, 1, 3),
287
+ yk.permute(0, 2, 1, 3),
288
+ yv.permute(0, 2, 1, 3),
289
+ y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
290
+ ).permute(0, 2, 1, 3)
291
+ output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
292
+ output = output + output_y
293
+
294
+ output = output.flatten(-2)
295
+ output = self.wo(output)
296
+
297
+ return output.to(inp_dtype)
298
+
299
+ class TransformerBlock(nn.Module):
300
+ """
301
+ Corresponds to the Transformer block in the JAX code.
302
+ """
303
+ def __init__(
304
+ self,
305
+ dim,
306
+ n_heads,
307
+ n_kv_heads,
308
+ multiple_of,
309
+ ffn_dim_multiplier,
310
+ norm_eps,
311
+ qk_norm,
312
+ y_dim,
313
+ max_position_embeddings,
314
+ ):
315
+ super().__init__()
316
+ self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
317
+ self.feed_forward = LLamaFeedForward(
318
+ dim=dim,
319
+ hidden_dim=4 * dim,
320
+ multiple_of=multiple_of,
321
+ ffn_dim_multiplier=ffn_dim_multiplier,
322
+ )
323
+ self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
324
+ self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
325
+ self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
326
+ self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
327
+ self.adaLN_modulation = nn.Sequential(
328
+ nn.SiLU(),
329
+ nn.Linear(min(dim, 1024), 4 * dim),
330
+ )
331
+ self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
332
+
333
+ def forward(
334
+ self,
335
+ x,
336
+ x_mask,
337
+ freqs_cis,
338
+ y,
339
+ y_mask,
340
+ adaln_input=None,
341
+ ):
342
+ if adaln_input is not None:
343
+ scales_gates = self.adaLN_modulation(adaln_input)
344
+ # TODO: Duong - check the dimension of chunking
345
+ # scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
346
+ scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
347
+ x = x + torch.tanh(gate_msa) * self.attention_norm2(
348
+ self.attention(
349
+ modulate(self.attention_norm1(x), scale_msa), # ok
350
+ x_mask,
351
+ freqs_cis,
352
+ self.attention_y_norm(y), # ok
353
+ y_mask,
354
+ )
355
+ )
356
+ x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
357
+ self.feed_forward(
358
+ modulate(self.ffn_norm1(x), scale_mlp),
359
+ )
360
+ )
361
+ else:
362
+ x = x + self.attention_norm2(
363
+ self.attention(
364
+ self.attention_norm1(x),
365
+ x_mask,
366
+ freqs_cis,
367
+ self.attention_y_norm(y),
368
+ y_mask,
369
+ )
370
+ )
371
+ x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
372
+ return x
373
+
374
+
375
+ class NextDiT(ModelMixin, ConfigMixin):
376
+ """
377
+ Diffusion model with a Transformer backbone for joint image-video training.
378
+ """
379
+ @register_to_config
380
+ def __init__(
381
+ self,
382
+ input_size=(1, 32, 32),
383
+ patch_size=(1, 2, 2),
384
+ in_channels=16,
385
+ hidden_size=4096,
386
+ depth=32,
387
+ num_heads=32,
388
+ num_kv_heads=None,
389
+ multiple_of=256,
390
+ ffn_dim_multiplier=None,
391
+ norm_eps=1e-5,
392
+ pred_sigma=False,
393
+ caption_channels=4096,
394
+ qk_norm=False,
395
+ norm_type="rms",
396
+ model_max_length=120,
397
+ rotary_max_length=384,
398
+ rotary_max_length_t=None
399
+ ):
400
+ super().__init__()
401
+ self.input_size = input_size
402
+ self.patch_size = patch_size
403
+ self.in_channels = in_channels
404
+ self.hidden_size = hidden_size
405
+ self.depth = depth
406
+ self.num_heads = num_heads
407
+ self.num_kv_heads = num_kv_heads or num_heads
408
+ self.multiple_of = multiple_of
409
+ self.ffn_dim_multiplier = ffn_dim_multiplier
410
+ self.norm_eps = norm_eps
411
+ self.pred_sigma = pred_sigma
412
+ self.caption_channels = caption_channels
413
+ self.qk_norm = qk_norm
414
+ self.norm_type = norm_type
415
+ self.model_max_length = model_max_length
416
+ self.rotary_max_length = rotary_max_length
417
+ self.rotary_max_length_t = rotary_max_length_t
418
+ self.out_channels = in_channels * 2 if pred_sigma else in_channels
419
+
420
+ self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
421
+
422
+ self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
423
+ self.y_embedder = nn.Sequential(
424
+ nn.LayerNorm(caption_channels, eps=1e-6),
425
+ nn.Linear(caption_channels, min(hidden_size, 1024)),
426
+ )
427
+
428
+ self.layers = nn.ModuleList([
429
+ TransformerBlock(
430
+ dim=hidden_size,
431
+ n_heads=num_heads,
432
+ n_kv_heads=self.num_kv_heads,
433
+ multiple_of=multiple_of,
434
+ ffn_dim_multiplier=ffn_dim_multiplier,
435
+ norm_eps=norm_eps,
436
+ qk_norm=qk_norm,
437
+ y_dim=caption_channels,
438
+ max_position_embeddings=rotary_max_length,
439
+ )
440
+ for _ in range(depth)
441
+ ])
442
+
443
+ self.final_layer = FinalLayer(
444
+ hidden_size=hidden_size,
445
+ num_patches=np.prod(patch_size),
446
+ out_channels=self.out_channels,
447
+ )
448
+
449
+ assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
450
+
451
+ self.freqs_cis = self.precompute_freqs_cis(
452
+ hidden_size // num_heads,
453
+ self.rotary_max_length,
454
+ end_t=self.rotary_max_length_t
455
+ )
456
+
457
+ def to(self, *args, **kwargs):
458
+ self = super().to(*args, **kwargs)
459
+ # self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
460
+ return self
461
+
462
+ @staticmethod
463
+ def precompute_freqs_cis(
464
+ dim: int,
465
+ end: int,
466
+ end_t: int = None,
467
+ theta: float = 10000.0,
468
+ scale_factor: float = 1.0,
469
+ scale_watershed: float = 1.0,
470
+ timestep: float = 1.0,
471
+ ):
472
+ if timestep < scale_watershed:
473
+ linear_factor = scale_factor
474
+ ntk_factor = 1.0
475
+ else:
476
+ linear_factor = 1.0
477
+ ntk_factor = scale_factor
478
+
479
+ theta = theta * ntk_factor
480
+ freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
481
+
482
+ timestep = torch.arange(end, dtype=torch.float32)
483
+ freqs = torch.outer(timestep, freqs).float()
484
+ freqs_cis = torch.exp(1j * freqs)
485
+
486
+ if end_t is not None:
487
+ freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
488
+ timestep_t = torch.arange(end_t, dtype=torch.float32)
489
+ freqs_t = torch.outer(timestep_t, freqs_t).float()
490
+ freqs_cis_t = torch.exp(1j * freqs_t)
491
+ freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
492
+ else:
493
+ end_t = end
494
+ freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
495
+
496
+ freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
497
+ freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
498
+ freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
499
+ return freqs_cis
500
+
501
+ def forward(
502
+ self,
503
+ samples,
504
+ timesteps,
505
+ encoder_hidden_states,
506
+ encoder_attention_mask,
507
+ scale_factor: float = 1.0, # scale_factor for rotary embedding
508
+ scale_watershed: float = 1.0, # scale_watershed for rotary embedding
509
+ ):
510
+ if samples.ndim == 4: # B C H W
511
+ samples = samples[:, None, ...] # B F C H W
512
+
513
+ precomputed_freqs_cis = None
514
+ if scale_factor != 1 or scale_watershed != 1:
515
+ precomputed_freqs_cis = self.precompute_freqs_cis(
516
+ self.hidden_size // self.num_heads,
517
+ self.rotary_max_length,
518
+ end_t=self.rotary_max_length_t,
519
+ scale_factor=scale_factor,
520
+ scale_watershed=scale_watershed,
521
+ timestep=torch.max(timesteps.cpu()).item()
522
+ )
523
+
524
+ if len(timesteps.shape) == 5:
525
+ t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
526
+ timesteps = t.mean(dim=-1)
527
+ elif len(timesteps.shape) == 1:
528
+ timesteps = timesteps[:, None, None, None, None].expand_as(samples)
529
+ t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
530
+ timesteps = t.mean(dim=-1)
531
+ samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
532
+ samples = self.x_embedder(samples)
533
+ t = self.t_embedder(timesteps)
534
+
535
+ encoder_attention_mask_float = encoder_attention_mask[..., None].float()
536
+ encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
537
+ encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
538
+ y = self.y_embedder(encoder_hidden_states_pool)
539
+ y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
540
+
541
+ adaln_input = t + y
542
+
543
+ for block in self.layers:
544
+ samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
545
+
546
+ samples = self.final_layer(samples, adaln_input)
547
+ samples = self.unpatchify(samples, T, H, W)
548
+
549
+ return samples
550
+
551
+ def patchify(self, x, precompute_freqs_cis=None):
552
+ # pytorch is C, H, W
553
+ B, T, C, H, W = x.size()
554
+ pT, pH, pW = self.patch_size
555
+ x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
556
+ x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
557
+ x = x.reshape(B, -1, pT * pH * pW * C)
558
+ if precompute_freqs_cis is None:
559
+ freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
560
+ else:
561
+ freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
562
+ return x, T // pT, H // pH, W // pW, freqs_cis
563
+
564
+ def unpatchify(self, x, T, H, W):
565
+ B = x.size(0)
566
+ C = self.out_channels
567
+ pT, pH, pW = self.patch_size
568
+ x = x.view(B, T, H, W, pT, pH, pW, C)
569
+ x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
570
+ x = x.reshape(B, T * pT, C, H * pH, W * pW)
571
+ return x