|
import os |
|
|
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from gfpgan.utils import GFPGANer |
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
from realesrgan.utils import RealESRGANer |
|
import examples |
|
|
|
REALESRGAN_REPO_ID = 'leonelhs/realesrgan' |
|
GFPGAN_REPO_ID = 'leonelhs/gfpgan' |
|
|
|
os.system("pip freeze") |
|
|
|
examples.download() |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename='realesr-general-x4v3.pth') |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
|
|
def predict(img, version, scale): |
|
|
|
print(img, version, scale) |
|
if scale > 4: |
|
scale = 4 |
|
try: |
|
extension = os.path.splitext(os.path.basename(str(img)))[1] |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 3 and img.shape[2] == 4: |
|
img_mode = 'RGBA' |
|
elif len(img.shape) == 2: |
|
img_mode = None |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
else: |
|
img_mode = None |
|
|
|
h, w = img.shape[0:2] |
|
if h > 3500 or w > 3500: |
|
print('too large size') |
|
return None, None |
|
|
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
face_enhancer = None |
|
snapshot_folder = snapshot_download(repo_id=GFPGAN_REPO_ID) |
|
|
|
if version == 'v1.2': |
|
path = os.path.join(snapshot_folder, 'GFPGANv1.2.pth') |
|
face_enhancer = GFPGANer( |
|
model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'v1.3': |
|
path = os.path.join(snapshot_folder, 'GFPGANv1.3.pth') |
|
face_enhancer = GFPGANer( |
|
model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'v1.4': |
|
path = os.path.join(snapshot_folder, 'GFPGANv1.4.pth') |
|
face_enhancer = GFPGANer( |
|
model_path=path, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) |
|
elif version == 'RestoreFormer': |
|
path = os.path.join(snapshot_folder, 'RestoreFormer.pth') |
|
face_enhancer = GFPGANer( |
|
model_path=path, upscale=2, arch='RestoreFormer', channel_multiplier=2, |
|
bg_upsampler=upsampler) |
|
|
|
try: |
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) |
|
except RuntimeError as error: |
|
print('Error', error) |
|
|
|
try: |
|
if scale != 2: |
|
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 |
|
h, w = img.shape[0:2] |
|
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) |
|
except Exception as error: |
|
print('wrong scale input.', error) |
|
if img_mode == 'RGBA': |
|
extension = 'png' |
|
else: |
|
extension = 'jpg' |
|
save_path = f'output/out.{extension}' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
return output, save_path |
|
except Exception as error: |
|
print('global exception', error) |
|
return None, None |
|
|
|
|
|
title = "GFPGAN: Practical Face Restoration Algorithm" |
|
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br> |
|
It can be used to restore your **old photos** or improve **AI-generated faces**.<br> |
|
To use it, simply upload your image.<br> |
|
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π |
|
""" |
|
article = r""" |
|
|
|
[![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases) |
|
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN) |
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061) |
|
|
|
If you have any question, please email π§ `xintao.wang@outlook.com` or `xintaowang@tencent.com`. |
|
|
|
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center> |
|
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center> |
|
""" |
|
demo = gr.Interface( |
|
predict, [ |
|
gr.Image(type="filepath", label="Input"), |
|
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'), |
|
gr.Number(label="Rescaling factor", value=2), |
|
], [ |
|
gr.Image(type="numpy", label="Output (The whole image)"), |
|
gr.File(label="Download the output image") |
|
], |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[['AI-generate.jpg', 'v1.4', 2], |
|
['lincoln.jpg', 'v1.4', 2], |
|
['Blake_Lively.jpg', 'v1.4', 2], |
|
['10045.png', 'v1.4', 2]]) |
|
demo.queue().launch() |
|
|