inis space
Browse files- .gitattributes +1 -0
- .gitignore +4 -0
- app.py +55 -0
- examples/01.jpg +3 -0
- examples/02.jpg +3 -0
- examples/03.jpg +3 -0
- poser.py +141 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.idea/
|
2 |
+
__pycache__/
|
3 |
+
requirements.txt
|
4 |
+
push_model.py
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL.Image
|
2 |
+
import PIL.ImageOps
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
|
7 |
+
from poser import draw_bones, movenet
|
8 |
+
|
9 |
+
|
10 |
+
def predict(image: PIL.Image):
|
11 |
+
input_size = 256
|
12 |
+
size = (1280, 1280)
|
13 |
+
image = PIL.ImageOps.fit(image, size, PIL.Image.LANCZOS)
|
14 |
+
image_tf = tf.keras.preprocessing.image.img_to_array(image)
|
15 |
+
# Resize and pad the image to keep the aspect ratio and fit the expected size.
|
16 |
+
input_image = tf.expand_dims(image_tf, axis=0)
|
17 |
+
input_image = tf.image.resize_with_pad(input_image, input_size, input_size)
|
18 |
+
keypoints = movenet(input_image)
|
19 |
+
keypoints = np.array(keypoints)
|
20 |
+
image = tf.keras.preprocessing.image.array_to_img(image_tf)
|
21 |
+
draw_bones(image, keypoints)
|
22 |
+
return image
|
23 |
+
|
24 |
+
|
25 |
+
footer = r"""
|
26 |
+
<center>
|
27 |
+
<b>
|
28 |
+
Demo for <a href='https://www.tensorflow.org/hub/tutorials/movenet'>MoveNet</a>
|
29 |
+
</b>
|
30 |
+
</center>
|
31 |
+
"""
|
32 |
+
|
33 |
+
with gr.Blocks(title="MoveNet") as app:
|
34 |
+
gr.HTML("<center><h1>Human Pose Estimation with MoveNet</h1></center>")
|
35 |
+
gr.HTML("<center><h3>MoveNet: Ultra fast and accurate pose detection model</h3></center>")
|
36 |
+
with gr.Row().style(equal_height=False):
|
37 |
+
with gr.Column():
|
38 |
+
input_img = gr.Image(type="pil", label="Input image")
|
39 |
+
run_btn = gr.Button(variant="primary")
|
40 |
+
with gr.Column():
|
41 |
+
output_img = gr.Image(type="numpy", label="Output image")
|
42 |
+
gr.ClearButton(components=[input_img, output_img], variant="stop")
|
43 |
+
|
44 |
+
run_btn.click(predict, [input_img], [output_img])
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
|
48 |
+
examples = gr.Dataset(components=[input_img], samples=blobs)
|
49 |
+
examples.click(lambda x: x[0], [examples], [input_img])
|
50 |
+
|
51 |
+
with gr.Row():
|
52 |
+
gr.HTML(footer)
|
53 |
+
|
54 |
+
app.launch(share=False, debug=True, show_error=True)
|
55 |
+
app.queue()
|
examples/01.jpg
ADDED
Git LFS Details
|
examples/02.jpg
ADDED
Git LFS Details
|
examples/03.jpg
ADDED
Git LFS Details
|
poser.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#############################################################################
|
2 |
+
#
|
3 |
+
# Source from:
|
4 |
+
# https://www.tensorflow.org/hub/tutorials/movenet
|
5 |
+
#
|
6 |
+
#
|
7 |
+
#############################################################################
|
8 |
+
import PIL.Image
|
9 |
+
import PIL.ImageOps
|
10 |
+
import numpy as np
|
11 |
+
import tensorflow as tf
|
12 |
+
from PIL import ImageDraw
|
13 |
+
from huggingface_hub import snapshot_download
|
14 |
+
|
15 |
+
|
16 |
+
# Dictionary that maps from joint names to keypoint indices.
|
17 |
+
KEYPOINT_DICT = {
|
18 |
+
'nose': 0,
|
19 |
+
'left_eye': 1, 'right_eye': 2,
|
20 |
+
'left_ear': 3, 'right_ear': 4,
|
21 |
+
'left_shoulder': 5, 'right_shoulder': 6,
|
22 |
+
'left_elbow': 7, 'right_elbow': 8,
|
23 |
+
'left_wrist': 9, 'right_wrist': 10,
|
24 |
+
'left_hip': 11, 'right_hip': 12,
|
25 |
+
'left_knee': 13, 'right_knee': 14,
|
26 |
+
'left_ankle': 15, 'right_ankle': 16
|
27 |
+
}
|
28 |
+
|
29 |
+
COLOR_DICT = {
|
30 |
+
(0, 1): 'Magenta',
|
31 |
+
(0, 2): 'Cyan',
|
32 |
+
(1, 3): 'Magenta',
|
33 |
+
(2, 4): 'Cyan',
|
34 |
+
(0, 5): 'Magenta',
|
35 |
+
(0, 6): 'Cyan',
|
36 |
+
(5, 7): 'Magenta',
|
37 |
+
(7, 9): 'Magenta',
|
38 |
+
(6, 8): 'Cyan',
|
39 |
+
(8, 10): 'Cyan',
|
40 |
+
(5, 6): 'Yellow',
|
41 |
+
(5, 11): 'Magenta',
|
42 |
+
(6, 12): 'Cyan',
|
43 |
+
(11, 12): 'Yellow',
|
44 |
+
(11, 13): 'Magenta',
|
45 |
+
(13, 15): 'Magenta',
|
46 |
+
(12, 14): 'Cyan',
|
47 |
+
(14, 16): 'Cyan'
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
def process_keypoints(keypoints, height, width, threshold=0.22):
|
52 |
+
"""Returns high confidence keypoints and edges for visualization.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
keypoints: A numpy array with shape [1, 1, 17, 3] representing
|
56 |
+
the keypoint coordinates and scores returned from the MoveNet model.
|
57 |
+
height: height of the image in pixels.
|
58 |
+
width: width of the image in pixels.
|
59 |
+
threshold: minimum confidence score for a keypoint to be
|
60 |
+
visualized.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
A (joints, bones, colors) containing:
|
64 |
+
* the coordinates of all keypoints of all detected entities;
|
65 |
+
* the coordinates of all skeleton edges of all detected entities;
|
66 |
+
* the colors in which the edges should be plotted.
|
67 |
+
"""
|
68 |
+
keypoints_all = []
|
69 |
+
keypoint_edges_all = []
|
70 |
+
colors = []
|
71 |
+
num_instances, _, _, _ = keypoints.shape
|
72 |
+
for idx in range(num_instances):
|
73 |
+
kpts_x = keypoints[0, idx, :, 1]
|
74 |
+
kpts_y = keypoints[0, idx, :, 0]
|
75 |
+
kpts_scores = keypoints[0, idx, :, 2]
|
76 |
+
kpts_absolute_xy = np.stack(
|
77 |
+
[width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
|
78 |
+
kpts_above_thresh_absolute = kpts_absolute_xy[
|
79 |
+
kpts_scores > threshold, :]
|
80 |
+
keypoints_all.append(kpts_above_thresh_absolute)
|
81 |
+
|
82 |
+
for edge_pair, color in COLOR_DICT.items():
|
83 |
+
if (kpts_scores[edge_pair[0]] > threshold and
|
84 |
+
kpts_scores[edge_pair[1]] > threshold):
|
85 |
+
x_start = kpts_absolute_xy[edge_pair[0], 0]
|
86 |
+
y_start = kpts_absolute_xy[edge_pair[0], 1]
|
87 |
+
x_end = kpts_absolute_xy[edge_pair[1], 0]
|
88 |
+
y_end = kpts_absolute_xy[edge_pair[1], 1]
|
89 |
+
line_seg = np.array([[x_start, y_start], [x_end, y_end]])
|
90 |
+
keypoint_edges_all.append(line_seg)
|
91 |
+
colors.append(color)
|
92 |
+
if keypoints_all:
|
93 |
+
joints = np.concatenate(keypoints_all, axis=0)
|
94 |
+
else:
|
95 |
+
joints = np.zeros((0, 17, 2))
|
96 |
+
|
97 |
+
if keypoint_edges_all:
|
98 |
+
bones = np.stack(keypoint_edges_all, axis=0)
|
99 |
+
else:
|
100 |
+
bones = np.zeros((0, 2, 2))
|
101 |
+
return joints, bones, colors
|
102 |
+
|
103 |
+
|
104 |
+
def draw_bones(pixmap: PIL.Image, keypoints):
|
105 |
+
draw = ImageDraw.Draw(pixmap)
|
106 |
+
joints, bones, colors = process_keypoints(keypoints, pixmap.height, pixmap.width)
|
107 |
+
|
108 |
+
for bone, color in zip(bones.tolist(), colors):
|
109 |
+
draw.line((*bone[0], *bone[1]), fill=color, width=4)
|
110 |
+
|
111 |
+
radio = 3
|
112 |
+
|
113 |
+
for c_x, c_y in joints:
|
114 |
+
shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)]
|
115 |
+
draw.ellipse(shape, fill="red", outline="red")
|
116 |
+
|
117 |
+
|
118 |
+
def movenet(image):
|
119 |
+
"""Runs detection on an input image.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
image: A [1, height, width, 3] tensor represents the input image
|
123 |
+
pixels. Note that the height/width should already be resized and match the
|
124 |
+
expected input resolution of the model before passing into this function.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
A [1, 1, 17, 3] float numpy array representing the predicted keypoint
|
128 |
+
coordinates and scores.
|
129 |
+
"""
|
130 |
+
model_path = snapshot_download("leonelhs/movenet")
|
131 |
+
module = tf.saved_model.load(model_path)
|
132 |
+
model = module.signatures['serving_default']
|
133 |
+
# SavedModel format expects tensor type of int32.
|
134 |
+
image = tf.cast(image, dtype=tf.int32)
|
135 |
+
# Run model inference.
|
136 |
+
outputs = model(image)
|
137 |
+
# Output is a [1, 1, 17, 3] tensor.
|
138 |
+
return outputs['output_0'].numpy()
|
139 |
+
|
140 |
+
|
141 |
+
|