Spaces:
Running
Running
fix predict
Browse files
remove_background/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .interface import app
|
|
|
|
remove_background/__main__.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from remove_background import app
|
2 |
-
|
3 |
-
|
4 |
-
def main():
|
5 |
-
app.queue().launch(share=True, debug=True)
|
6 |
-
|
7 |
-
|
8 |
-
if __name__ == "__main__":
|
9 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
remove_background/interface.py
DELETED
@@ -1,81 +0,0 @@
|
|
1 |
-
import PIL.Image
|
2 |
-
import gradio as gr
|
3 |
-
import huggingface_hub
|
4 |
-
import onnxruntime as rt
|
5 |
-
import numpy as np
|
6 |
-
import cv2
|
7 |
-
|
8 |
-
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
9 |
-
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
|
10 |
-
rmbg_model = rt.InferenceSession(model_path, providers=providers)
|
11 |
-
|
12 |
-
|
13 |
-
def custom_background(background, foreground):
|
14 |
-
x = (background.size[0] - foreground.size[0]) / 2
|
15 |
-
y = (background.size[1] - foreground.size[1]) / 2
|
16 |
-
box = (x, y, foreground.size[0] + x, foreground.size[1] + y)
|
17 |
-
crop = background.crop(box)
|
18 |
-
final_image = crop.copy()
|
19 |
-
# put the foreground in the centre of the background
|
20 |
-
paste_box = (0, final_image.size[1] - foreground.size[1], final_image.size[0], final_image.size[1])
|
21 |
-
final_image.paste(foreground, paste_box, mask=foreground)
|
22 |
-
return final_image
|
23 |
-
|
24 |
-
|
25 |
-
def get_mask(img, s=1024):
|
26 |
-
img = (img / 255).astype(np.float32)
|
27 |
-
h, w = h0, w0 = img.shape[:-1]
|
28 |
-
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
29 |
-
ph, pw = s - h, s - w
|
30 |
-
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
31 |
-
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
|
32 |
-
img_input = np.transpose(img_input, (2, 0, 1))
|
33 |
-
img_input = img_input[np.newaxis, :]
|
34 |
-
mask = rmbg_model.run(None, {'img': img_input})[0][0]
|
35 |
-
mask = np.transpose(mask, (1, 2, 0))
|
36 |
-
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
|
37 |
-
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis]
|
38 |
-
return mask
|
39 |
-
|
40 |
-
|
41 |
-
def predict(img, new_background):
|
42 |
-
mask = get_mask(img)
|
43 |
-
img = (mask * img + 255 * (1 - mask)).astype(np.uint8)
|
44 |
-
mask = (mask * 255).astype(np.uint8)
|
45 |
-
img = np.concatenate([img, mask], axis=2, dtype=np.uint8)
|
46 |
-
mask = mask.repeat(3, axis=2)
|
47 |
-
if new_background is not None:
|
48 |
-
foreground = PIL.Image.fromarray(img)
|
49 |
-
return mask, custom_background(new_background, foreground)
|
50 |
-
return mask, img
|
51 |
-
|
52 |
-
|
53 |
-
footer = r"""
|
54 |
-
<center>
|
55 |
-
<b>
|
56 |
-
Demo based on <a href='https://github.com/SkyTNT/anime-segmentation'>SkyTNT Anime Segmentation</a>
|
57 |
-
</b>
|
58 |
-
</center>
|
59 |
-
"""
|
60 |
-
|
61 |
-
with gr.Blocks(title="Face Shine") as app:
|
62 |
-
gr.HTML("<center><h1>Anime Remove Background</h1></center>")
|
63 |
-
with gr.Row():
|
64 |
-
with gr.Column():
|
65 |
-
input_img = gr.Image(type="numpy", label="Input image")
|
66 |
-
new_img = gr.Image(type="pil", label="Custom background")
|
67 |
-
run_btn = gr.Button(variant="primary")
|
68 |
-
with gr.Column():
|
69 |
-
with gr.Accordion(label="Image mask", open=False):
|
70 |
-
output_mask = gr.Image(label="mask")
|
71 |
-
output_img = gr.Image(type="pil", label="result")
|
72 |
-
|
73 |
-
run_btn.click(predict, [input_img, new_img], [output_mask, output_img])
|
74 |
-
|
75 |
-
with gr.Row():
|
76 |
-
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
|
77 |
-
examples = gr.Dataset(components=[input_img], samples=examples_data)
|
78 |
-
examples.click(lambda x: x[0], [examples], [input_img])
|
79 |
-
|
80 |
-
with gr.Row():
|
81 |
-
gr.HTML(footer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|