# This file is adapted from https://github.com/facebookresearch/CutLER/blob/077938c626341723050a1971107af552a6ca6697/cutler/demo/demo.py # The original license file is the file named LICENSE.CutLER in this repo. import argparse import multiprocessing as mp import os import pathlib import shlex import subprocess import sys import numpy as np import torch from detectron2.config import get_cfg from detectron2.data.detection_utils import read_image sys.path.append('CutLER/cutler/') sys.path.append('CutLER/cutler/demo') from config import add_cutler_config from predictor import VisualizationDemo mp.set_start_method('spawn', force=True) def setup_cfg(args): # load config from file and command-line arguments cfg = get_cfg() add_cutler_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # Disable the use of SyncBN normalization when running on a CPU # SyncBN is not supported on CPU and can cause errors, so we switch to BN instead if cfg.MODEL.DEVICE == 'cpu' and cfg.MODEL.RESNETS.NORM == 'SyncBN': cfg.MODEL.RESNETS.NORM = 'BN' cfg.MODEL.FPN.NORM = 'BN' # Set score_threshold for builtin models cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold cfg.freeze() return cfg def get_parser(): parser = argparse.ArgumentParser( description='Detectron2 demo for builtin configs') parser.add_argument( '--config-file', default= 'model_zoo/configs/CutLER-ImageNet/cascade_mask_rcnn_R_50_FPN.yaml', metavar='FILE', help='path to config file', ) parser.add_argument('--webcam', action='store_true', help='Take inputs from webcam.') parser.add_argument('--video-input', help='Path to video file.') parser.add_argument( '--input', nargs='+', help='A list of space separated input images; ' "or a single glob pattern such as 'directory/*.jpg'", ) parser.add_argument( '--output', help='A file or directory to save output visualizations. ' 'If not given, will show output in an OpenCV window.', ) parser.add_argument( '--confidence-threshold', type=float, default=0.35, help='Minimum score for instance predictions to be shown', ) parser.add_argument( '--opts', help="Modify config options using the command-line 'KEY VALUE' pairs", default=[], nargs=argparse.REMAINDER, ) return parser CONFIG_PATH = 'CutLER/cutler/model_zoo/configs/CutLER-ImageNet/cascade_mask_rcnn_R_50_FPN.yaml' def load_model(score_threshold: float) -> VisualizationDemo: # Get secrets hf_token = os.getenv('HF_TOKEN') model_filename = os.getenv('MODEL_NAME') model_dir = pathlib.Path('checkpoints') model_dir.mkdir(exist_ok=True) weight_path = model_dir / model_filename # Load the model weights file from huggingface hub, use token to authenticate if not weight_path.exists(): subprocess.run(shlex.split(f'huggingface-cli download leonsick/cuts3d_zeroshot {model_filename} --token {hf_token} --local-dir {model_dir}')) arg_list = [ '--config-file', CONFIG_PATH, '--confidence-threshold', str(score_threshold), '--opts', 'MODEL.WEIGHTS', weight_path.as_posix(), 'MODEL.DEVICE', 'cuda:0' if torch.cuda.is_available() else 'cpu', 'DATASETS.TEST', '()', ] args = get_parser().parse_args(arg_list) cfg = setup_cfg(args) return VisualizationDemo(cfg) def run_model(image_path: str, score_threshold: float = 0.5) -> np.ndarray: print("***START***") model = load_model(score_threshold) print("***Model loaded***") image = read_image(image_path, format='BGR') print("***Image Read***") _, res = model.run_on_image(image) print("***END***") print("***type(res.get_image())***", type(res.get_image())) return res.get_image()