SLR / agents.py
leonsimon23's picture
Upload 11 files
ac13c4a verified
raw
history blame
5.16 kB
# agents.py
import requests
import json
from flask import jsonify
import os
key = os.getenv("API-KEY")
api_key = key
import re # Import the regular expressions library
def generate_research_questions_and_purpose_with_gpt(objective, num_questions):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
# Construct the prompt dynamically
prompt_content = f"You are a helpful assistant capable of generating research questions along with their purposes for a systematic literature review.\n"
prompt_content = f"Given the research objective: '{objective}', generate {num_questions} distinct research questions, each followed by its specific purpose. 'To examine', or 'To investigate'."
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant capable of generating research questions along with their purposes for a systematic literature review."},
{"role": "user", "content": prompt_content}
],
"temperature": 0.7
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data))
if response.status_code == 200:
result = response.json()
messages = result['choices'][0]['message']['content']
lines = [line for line in messages.strip().split('\n') if line]
question_purpose_objects = []
for i in range(0, len(lines), 2):
# Using regex to dynamically remove "Research question X:" where X is any number
question = re.sub(r"^Research question( \d+)?: ", "", lines[i], flags=re.IGNORECASE)
purpose = lines[i+1] if i+1 < len(lines) else "Purpose not provided"
# Optionally, remove the prefix from purpose if needed
# purpose = purpose.replace("Purpose: ", "")
question_purpose_objects.append({"question": question, "purpose": purpose})
if num_questions == 1 and question_purpose_objects:
return {"research_questions": question_purpose_objects}
else:
return {"research_questions": question_purpose_objects}
else:
print(f"Error: {response.status_code}")
print(response.text)
return []
def generate_summary_conclusion(papers_info):
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
prompt_parts = ["Summarize the conclusions of the following papers:"]
for paper in papers_info:
title = paper.get("title")
author = paper.get("creator", "An author")
year = paper.get("year", "A year")
prompt_parts.append(f"- '{title}' by {author} ({year})")
prompt = " ".join(prompt_parts)
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
data=json.dumps(data),
)
if response.status_code == 200:
result = response.json()
content = result["choices"][0]["message"]["content"]
summary_conclusion = content.strip()
else:
return jsonify({"error": "Failed to generate a summary conclusion."}), 500
return summary_conclusion
def generate_abstract_with_openai(prompt):
"""Generates a summary abstract using OpenAI's GPT model based on the provided prompt."""
# Fetching the API key from environment variables for better security practice
headers = {
"Authorization": f"Bearer {api_key}", # Using the API key from environment variables
"Content-Type": "application/json"
}
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data))
if response.status_code == 200:
result = response.json()
content = result['choices'][0]['message']['content']
return content.strip()
else:
raise Exception("Failed to generate a summary abstract from OpenAI.")
def generate_introduction_summary_with_openai(prompt):
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, data=json.dumps(data))
if response.status_code == 200:
result = response.json()
content = result['choices'][0]['message']['content']
return content.strip()
else:
raise Exception("Failed to generate the introduction summary from OpenAI.")