File size: 11,068 Bytes
6dc4993 33e8e23 6811674 6dc4993 6811674 6dc4993 d190b72 6dc4993 d190b72 6dc4993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import errant
import spacy
import os
import json
import nltk
from utils import get_random_prompt, instruction_prompts
from llama_cpp import Llama
from transformers import pipeline
import config
# Load necessary models and resources
nlp = spacy.load("en_core_web_sm")
annotator = errant.load('en', nlp)
errant_path = os.path.join(os.path.dirname("./"), 'errant_verbose.json')
errant_verbose = json.load(open(errant_path, "r"))
sent_detector = nltk.data.load('./nltk_data/tokenizers/punkt/english.pickle')
print("Loading models ...")
# Load text editor (TinyLlama)
text_editor = Llama(
model_path="./texteditor-model/coedit-tinyllama-chat-bnb-4bit-unsloth.Q4_K_M.gguf",
verbose=True
)
print("text editor is loaded!")
# Load grammar corrector (Flan-T5)
grammar_corrector = pipeline(
'text2text-generation',
'pszemraj/flan-t5-large-grammar-synthesis',
)
print("grammar corrector is loaded!")
def correcting_text(src: str) -> str:
"""
Corrects grammatical errors in the given text using the grammar corrector model.
Args:
src: The text to be corrected.
Returns:
The grammatically corrected text.
"""
lines = src.split('\n')
sentences = []
line_idx = []
for l_idx, line in enumerate(lines):
if len(line) == 0:
continue
l_sents = sent_detector.tokenize(line)
for sent in l_sents:
sentences.append(sent)
line_idx.append(l_idx)
num_iter = (len(sentences) + config.BATCH_SIZE - 1) // config.BATCH_SIZE
final_outs = []
out_lines = ["" for _ in lines]
for i in range(num_iter):
start = i * config.BATCH_SIZE
end = min((i + 1) * config.BATCH_SIZE, len(sentences))
final_outs += grammar_corrector(sentences[start:end], max_length=128, num_beams=5, early_stopping=True)
for i in range(len(final_outs)):
out_lines[line_idx[i]] += final_outs[i]["generated_text"] + " "
return "\n".join(out_lines)
def annotate_text(src: str, tag: str, analyze: bool = True) -> list:
"""
Annotates the text with edits based on the provided tag using the Errant library.
original code from: https://github.com/nusnlp/ALLECS
Args:
src: The source text.
tag: The target text.
analyze: Whether to analyze and provide detailed information about edits.
Returns:
A list of tuples representing the edits, where each tuple is:
- (edit_text, edit_type)
"""
out = {"edits": []}
out['source'] = src
src_doc = annotator.parse(src)
tag_doc = annotator.parse(tag)
cur_edits = annotator.annotate(src_doc, tag_doc)
for e in cur_edits:
out["edits"].append((e.o_start, e.o_end, e.type, e.c_str))
result = []
last_pos = 0
if analyze:
tokens = out['source']
if isinstance(tokens, str):
tokens = tokens.split(' ')
edits = out['edits']
offset = 0
for edit in edits:
if isinstance(edit, dict):
e_start = edit['start']
e_end = edit['end']
e_type = edit['type']
e_rep = edit['cor']
elif isinstance(edit, tuple):
e_start = edit[0]
e_end = edit[1]
e_type = edit[2]
e_rep = edit[3]
else:
raise ValueError("Data type {} is not supported."\
.format(type(edit)))
e_rep = e_rep.strip()
op_type = e_type[0]
pos_type = e_type[2:]
errant_info = errant_verbose[pos_type]
title = errant_info["title"]
result.append((' '.join(tokens[last_pos:e_start + offset]), None))
ori_str = ' '.join(tokens[e_start + offset:e_end + offset]).strip()
if pos_type == "ORTH":
# check if it's a casing issue
if ori_str.lower() == e_rep.lower():
if e_rep[0].isupper() and ori_str[0].islower():
msg = "<b>{ori}</b> should be capitalized."
elif e_rep[0].islower() and ori_str[0].isupper():
msg = "<b>{ori}</b> should not be capitalized."
else:
msg = "The casing of the word <b>{ori}</b> is wrong."
# then it should be a spacing issue
else:
if len(ori_str) - 1 == len(e_rep):
msg = "The word <b>{ori}</b> should not be written separately."
elif len(ori_str) + 1 == len(e_rep):
msg = "The word <b>{ori}</b> should be separated into <b>{cor}</b>."
else:
msg = "The word <b>{ori}</b> has orthography error."
else:
if op_type in errant_info:
msg = errant_info[op_type]
else:
msg = errant_verbose["Default"][op_type]
msg = '<p>' + msg.format(ori=ori_str, cor=e_rep) + '</p>'
e_cor = e_rep.split()
len_cor = len(e_cor)
tokens[e_start + offset:e_end + offset] = e_cor
last_pos = e_start + offset + len_cor
offset = offset - (e_end - e_start) + len_cor
result.append((e_rep, pos_type))
out = ' '.join(tokens)
result.append((' '.join(tokens[last_pos:]), None))
print(result)
return result
def choices2promts() -> list:
"""
Returns a list of available instructions for text editing.
Returns:
A list of instruction names.
"""
return instruction_prompts.keys()
with gr.Blocks() as demo:
def turn_off_legend(msg: str) -> gr.update:
"""
Turns off the legend in the highlighted text component.
Args:
msg: The text input.
Returns:
A Gradio update object to hide the legend.
"""
return gr.update(show_legend=False)
def turn_on_legend(annotate: bool) -> gr.update:
"""
Turns on the legend in the highlighted text component if annotate is True.
Args:
annotate: Whether to show annotations.
Returns:
A Gradio update object to show or hide the legend.
"""
if annotate:
return gr.update(show_legend=True)
else:
return gr.update(show_legend=False)
def bot(task: str, text: str, post_check: bool, annotate: bool) -> tuple:
"""
Processes the user input and returns the edited text along with annotations.
Args:
task: The chosen instruction for editing.
text: The text to be edited.
post_check: Whether to check for grammatical errors after text generation.
annotate: Whether to show annotations.
Yields:
Tuples of (edited text, annotation type) to update the interface.
"""
response = ""
if task == "Grammar Error Correction":
yield [("Processing ...", None)], "Checking Grammar ..."
response = correcting_text(text)
else:
instruction = get_random_prompt(task)
prompt = instruction + ": " + text
print(prompt)
output = text_editor.create_chat_completion(
messages=[
{
"role": "system",
"content": "You are an English writing assistant, editing the text of user input and response based on user instructions. Please do not provide explanations, but respond only with the edited text. Also, if the instruction is not provided, correct the grammar of the text. Finally, if the instruction is not for editing text, correct the grammar of the text.",
},
{"role": "user", "content": f"{prompt}"},
],
temperature=0.0,
stream=True,
)
response = ""
for chunk in output:
delta = chunk["choices"][0]["delta"]
if "role" in delta:
pass
elif "content" in delta:
response+=delta['content']
res = [(response, None), ]
print(res)
yield res, "Generating output ..."
if post_check:
yield [(response, None)], "Checking Grammar ..."
response = correcting_text(response)
print(response)
if annotate:
e_edit = annotate_text(text, response)
else:
e_edit = [(response, None)]
yield e_edit, "Done."
def handle_highlight_selection():
"""
Handles the selection event of the highlighted text component.
This function is not implemented in the original code.
"""
# print("hi")
return
gr.Markdown("# English Text Editing Application using T5 and Tiny Llama")
gr.Markdown("> source code: https://github.com/LETHEVIET/t5nyllama")
with gr.Row() as row:
with gr.Column(scale=1) as col1:
instruction = gr.Dropdown(
choices=choices2promts(),
value="Grammar Error Correction",
multiselect=False,
label="Choose your instruction",
interactive=True,
scale=0
)
with gr.Row() as row2:
clear = gr.Button("Clear", scale=-1)
submit = gr.Button("submit", scale=-1)
info_msg = gr.Textbox(
label="Information",
scale=1,
lines=3,
value="Information will show here.",
)
post_check = gr.Checkbox(label="Check grammaticality after text generation.", value=True)
annotate = gr.Checkbox(label="Highlight different", value=True)
with gr.Column(scale=2) as col2:
msg = gr.Textbox(
label="Input",
scale=3,
value="i can has cheezburger.",
)
result = gr.HighlightedText(
label="Result",
combine_adjacent=True,
show_legend=False,
scale=3
)
res_msg = gr.Textbox(
scale=0,
visible=False,
label="Ouput",
)
msg.submit(turn_off_legend, msg, result).then(bot, [instruction, msg, post_check, annotate], [result, info_msg]).then(turn_on_legend, annotate, result)
clear.click(lambda: None, None, result, queue=False)
submit.click(turn_off_legend, msg, result).then(bot, [instruction, msg, post_check, annotate], [result, info_msg]).then(turn_on_legend, annotate, result)
result.select(handle_highlight_selection, [], [])
if __name__ == "__main__":
demo.launch(server_port=7860) |