Spaces:
Running
Running
File size: 29,908 Bytes
452072e 5b25803 452072e 5b25803 452072e 5b25803 452072e 5b25803 452072e 5b25803 452072e 9c9eab3 452072e 9c9eab3 452072e 9c9eab3 452072e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import re
from collections import OrderedDict
from html import escape
from pathlib import Path
import dateparser
import grobid_tei_xml
from bs4 import BeautifulSoup
from tqdm import tqdm
def get_span_start(type, title=None):
title_ = ' title="' + title + '"' if title is not None else ""
return '<span class="label ' + type + '"' + title_ + '>'
def get_span_end():
return '</span>'
def get_rs_start(type):
return '<rs type="' + type + '">'
def get_rs_end():
return '</rs>'
def has_space_between_value_and_unit(quantity):
return quantity['offsetEnd'] < quantity['rawUnit']['offsetStart']
def decorate_text_with_annotations(text, spans, tag="span"):
"""
Decorate a text using spans, using two style defined by the tag:
- "span" generated HTML like annotated text
- "rs" generate XML like annotated text (format SuperMat)
"""
sorted_spans = list(sorted(spans, key=lambda item: item['offset_start']))
annotated_text = ""
start = 0
for span in sorted_spans:
type = span['type'].replace("<", "").replace(">", "")
if 'unit_type' in span and span['unit_type'] is not None:
type = span['unit_type'].replace(" ", "_")
annotated_text += escape(text[start: span['offset_start']])
title = span['quantified'] if 'quantified' in span else None
annotated_text += get_span_start(type, title) if tag == "span" else get_rs_start(type)
annotated_text += escape(text[span['offset_start']: span['offset_end']])
annotated_text += get_span_end() if tag == "span" else get_rs_end()
start = span['offset_end']
annotated_text += escape(text[start: len(text)])
return annotated_text
def extract_quantities(client, x_all, column_text_index):
# relevant_items = ['magnetic field strength', 'magnetic induction', 'maximum energy product',
# "magnetic flux density", "magnetic flux"]
# property_keywords = ['coercivity', 'remanence']
output_data = []
for idx, example in tqdm(enumerate(x_all), desc="extract quantities"):
text = example[column_text_index]
spans = GrobidQuantitiesProcessor(client).extract_quantities(text)
data_record = {
"id": example[0],
"filename": example[1],
"passage_id": example[2],
"text": text,
"spans": spans
}
output_data.append(data_record)
return output_data
def extract_materials(client, x_all, column_text_index):
output_data = []
for idx, example in tqdm(enumerate(x_all), desc="extract materials"):
text = example[column_text_index]
spans = GrobidMaterialsProcessor(client).extract_materials(text)
data_record = {
"id": example[0],
"filename": example[1],
"passage_id": example[2],
"text": text,
"spans": spans
}
output_data.append(data_record)
return output_data
def get_parsed_value_type(quantity):
if 'parsedValue' in quantity and 'structure' in quantity['parsedValue']:
return quantity['parsedValue']['structure']['type']
class BaseProcessor(object):
# def __init__(self, grobid_superconductors_client=None, grobid_quantities_client=None):
# self.grobid_superconductors_client = grobid_superconductors_client
# self.grobid_quantities_client = grobid_quantities_client
patterns = [
r'\d+e\d+'
]
def post_process(self, text):
output = text.replace('À', '-')
output = output.replace('¼', '=')
output = output.replace('þ', '+')
output = output.replace('Â', 'x')
output = output.replace('$', '~')
output = output.replace('−', '-')
output = output.replace('–', '-')
for pattern in self.patterns:
output = re.sub(pattern, lambda match: match.group().replace('e', '-'), output)
return output
class GrobidProcessor(BaseProcessor):
def __init__(self, grobid_client):
# super().__init__()
self.grobid_client = grobid_client
def process_structure(self, input_path):
pdf_file, status, text = self.grobid_client.process_pdf("processFulltextDocument",
input_path,
consolidate_header=True,
consolidate_citations=False,
segment_sentences=False,
tei_coordinates=False,
include_raw_citations=False,
include_raw_affiliations=False,
generateIDs=True)
if status != 200:
return
output_data = self.parse_grobid_xml(text)
output_data['filename'] = Path(pdf_file).stem.replace(".tei", "")
return output_data
def process_single(self, input_file):
doc = self.process_structure(input_file)
for paragraph in doc['passages']:
entities = self.process_single_text(paragraph['text'])
paragraph['spans'] = entities
return doc
def parse_grobid_xml(self, text):
output_data = OrderedDict()
doc_biblio = grobid_tei_xml.parse_document_xml(text)
biblio = {
"doi": doc_biblio.header.doi if doc_biblio.header.doi is not None else "",
"authors": ", ".join([author.full_name for author in doc_biblio.header.authors]),
"title": doc_biblio.header.title,
"hash": doc_biblio.pdf_md5
}
try:
year = dateparser.parse(doc_biblio.header.date).year
biblio["year"] = year
except:
pass
output_data['biblio'] = biblio
passages = []
output_data['passages'] = passages
# if biblio['title'] is not None and len(biblio['title']) > 0:
# passages.append({
# "text": self.post_process(biblio['title']),
# "type": "paragraph",
# "section": "<header>",
# "subSection": "<title>",
# "passage_id": "title0"
# })
if doc_biblio.abstract is not None and len(doc_biblio.abstract) > 0:
passages.append({
"text": self.post_process(doc_biblio.abstract),
"type": "paragraph",
"section": "<header>",
"subSection": "<abstract>",
"passage_id": "abstract0"
})
soup = BeautifulSoup(text, 'xml')
text_blocks_body = get_children_body(soup, verbose=False)
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<paragraph>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_body) for
sentence_id, sentence in enumerate(paragraph)
])
text_blocks_figures = get_children_figures(soup, verbose=False)
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<figure>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_figures) for
sentence_id, sentence in enumerate(paragraph)
])
return output_data
class GrobidQuantitiesProcessor(BaseProcessor):
def __init__(self, grobid_quantities_client):
self.grobid_quantities_client = grobid_quantities_client
def extract_quantities(self, text):
status, result = self.grobid_quantities_client.process_text(text.strip())
if status != 200:
result = {}
spans = []
if 'measurements' in result:
found_measurements = self.parse_measurements_output(result)
for m in found_measurements:
item = {
"text": text[m['offset_start']:m['offset_end']],
'offset_start': m['offset_start'],
'offset_end': m['offset_end']
}
if 'raw' in m and m['raw'] != item['text']:
item['text'] = m['raw']
if 'quantified_substance' in m:
item['quantified'] = m['quantified_substance']
if 'type' in m:
item["unit_type"] = m['type']
item['type'] = 'property'
# if 'raw_value' in m:
# item['raw_value'] = m['raw_value']
spans.append(item)
return spans
@staticmethod
def parse_measurements_output(result):
measurements_output = []
for measurement in result['measurements']:
type = measurement['type']
measurement_output_object = {}
quantity_type = None
has_unit = False
parsed_value_type = None
if 'quantified' in measurement:
if 'normalizedName' in measurement['quantified']:
quantified_substance = measurement['quantified']['normalizedName']
measurement_output_object["quantified_substance"] = quantified_substance
if 'measurementOffsets' in measurement:
measurement_output_object["offset_start"] = measurement["measurementOffsets"]['start']
measurement_output_object["offset_end"] = measurement["measurementOffsets"]['end']
else:
# If there are no offsets we skip the measurement
continue
# if 'measurementRaw' in measurement:
# measurement_output_object['raw_value'] = measurement['measurementRaw']
if type == 'value':
quantity = measurement['quantity']
parsed_value = GrobidQuantitiesProcessor.get_parsed(quantity)
if parsed_value:
measurement_output_object['parsed'] = parsed_value
normalized_value = GrobidQuantitiesProcessor.get_normalized(quantity)
if normalized_value:
measurement_output_object['normalized'] = normalized_value
raw_value = GrobidQuantitiesProcessor.get_raw(quantity)
if raw_value:
measurement_output_object['raw'] = raw_value
if 'type' in quantity:
quantity_type = quantity['type']
if 'rawUnit' in quantity:
has_unit = True
parsed_value_type = get_parsed_value_type(quantity)
elif type == 'interval':
if 'quantityMost' in measurement:
quantityMost = measurement['quantityMost']
if 'type' in quantityMost:
quantity_type = quantityMost['type']
if 'rawUnit' in quantityMost:
has_unit = True
parsed_value_type = get_parsed_value_type(quantityMost)
if 'quantityLeast' in measurement:
quantityLeast = measurement['quantityLeast']
if 'type' in quantityLeast:
quantity_type = quantityLeast['type']
if 'rawUnit' in quantityLeast:
has_unit = True
parsed_value_type = get_parsed_value_type(quantityLeast)
elif type == 'listc':
quantities = measurement['quantities']
if 'type' in quantities[0]:
quantity_type = quantities[0]['type']
if 'rawUnit' in quantities[0]:
has_unit = True
parsed_value_type = get_parsed_value_type(quantities[0])
if quantity_type is not None or has_unit:
measurement_output_object['type'] = quantity_type
if parsed_value_type is None or parsed_value_type not in ['ALPHABETIC', 'TIME']:
measurements_output.append(measurement_output_object)
return measurements_output
@staticmethod
def get_parsed(quantity):
parsed_value = parsed_unit = None
if 'parsedValue' in quantity and 'parsed' in quantity['parsedValue']:
parsed_value = quantity['parsedValue']['parsed']
if 'parsedUnit' in quantity and 'name' in quantity['parsedUnit']:
parsed_unit = quantity['parsedUnit']['name']
if parsed_value and parsed_unit:
if has_space_between_value_and_unit(quantity):
return str(parsed_value) + str(parsed_unit)
else:
return str(parsed_value) + " " + str(parsed_unit)
@staticmethod
def get_normalized(quantity):
normalized_value = normalized_unit = None
if 'normalizedQuantity' in quantity:
normalized_value = quantity['normalizedQuantity']
if 'normalizedUnit' in quantity and 'name' in quantity['normalizedUnit']:
normalized_unit = quantity['normalizedUnit']['name']
if normalized_value and normalized_unit:
if has_space_between_value_and_unit(quantity):
return str(normalized_value) + " " + str(normalized_unit)
else:
return str(normalized_value) + str(normalized_unit)
@staticmethod
def get_raw(quantity):
raw_value = raw_unit = None
if 'rawValue' in quantity:
raw_value = quantity['rawValue']
if 'rawUnit' in quantity and 'name' in quantity['rawUnit']:
raw_unit = quantity['rawUnit']['name']
if raw_value and raw_unit:
if has_space_between_value_and_unit(quantity):
return str(raw_value) + " " + str(raw_unit)
else:
return str(raw_value) + str(raw_unit)
class GrobidMaterialsProcessor(BaseProcessor):
def __init__(self, grobid_superconductors_client):
self.grobid_superconductors_client = grobid_superconductors_client
def extract_materials(self, text):
preprocessed_text = text.strip()
status, result = self.grobid_superconductors_client.process_text(preprocessed_text, "processText_disable_linking")
if status != 200:
result = {}
spans = []
if 'passages' in result:
materials = self.parse_superconductors_output(result, preprocessed_text)
for m in materials:
item = {"text": preprocessed_text[m['offset_start']:m['offset_end']]}
item['offset_start'] = m['offset_start']
item['offset_end'] = m['offset_end']
if 'formula' in m:
item["formula"] = m['formula']
item['type'] = 'material'
item['raw_value'] = m['text']
spans.append(item)
return spans
def parse_materials(self, text):
status, result = self.grobid_superconductors_client.process_texts(text.strip(), "parseMaterials")
if status != 200:
result = []
results = []
for position_material in result:
compositions = []
for material in position_material:
if 'resolvedFormulas' in material:
for resolved_formula in material['resolvedFormulas']:
if 'formulaComposition' in resolved_formula:
compositions.append(resolved_formula['formulaComposition'])
elif 'formula' in material:
if 'formulaComposition' in material['formula']:
compositions.append(material['formula']['formulaComposition'])
results.append(compositions)
return results
def parse_material(self, text):
status, result = self.grobid_superconductors_client.process_text(text.strip(), "parseMaterial")
if status != 200:
result = []
compositions = []
for material in result:
if 'resolvedFormulas' in material:
for resolved_formula in material['resolvedFormulas']:
if 'formulaComposition' in resolved_formula:
compositions.append(resolved_formula['formulaComposition'])
elif 'formula' in material:
if 'formulaComposition' in material['formula']:
compositions.append(material['formula']['formulaComposition'])
return compositions
@staticmethod
def parse_superconductors_output(result, original_text):
materials = []
for passage in result['passages']:
sentence_offset = original_text.index(passage['text'])
if 'spans' in passage:
spans = passage['spans']
for material_span in filter(lambda s: s['type'] == '<material>', spans):
text_ = material_span['text']
base_material_information = {
"text": text_,
"offset_start": sentence_offset + material_span['offset_start'],
'offset_end': sentence_offset + material_span['offset_end']
}
materials.append(base_material_information)
return materials
class GrobidAggregationProcessor(GrobidProcessor, GrobidQuantitiesProcessor, GrobidMaterialsProcessor):
def __init__(self, grobid_client, grobid_quantities_client=None, grobid_superconductors_client=None):
GrobidProcessor.__init__(self, grobid_client)
self.gqp = GrobidQuantitiesProcessor(grobid_quantities_client)
self.gmp = GrobidMaterialsProcessor(grobid_superconductors_client)
def process_single_text(self, text):
extracted_quantities_spans = self.gqp.extract_quantities(text)
extracted_materials_spans = self.gmp.extract_materials(text)
all_entities = extracted_quantities_spans + extracted_materials_spans
entities = self.prune_overlapping_annotations(all_entities)
return entities
@staticmethod
def prune_overlapping_annotations(entities: list) -> list:
# Sorting by offsets
sorted_entities = sorted(entities, key=lambda d: d['offset_start'])
if len(entities) <= 1:
return sorted_entities
to_be_removed = []
previous = None
first = True
for current in sorted_entities:
if first:
first = False
previous = current
continue
if previous['offset_start'] < current['offset_start'] \
and previous['offset_end'] < current['offset_end'] \
and (previous['offset_end'] < current['offset_start'] \
and not (previous['text'] == "-" and current['text'][0].isdigit())):
previous = current
continue
if previous['offset_end'] < current['offset_end']:
if current['type'] == previous['type']:
# Type is the same
if current['offset_start'] == previous['offset_end']:
if current['type'] == 'property':
if current['text'].startswith("."):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# current entity starts with a ".", suspiciously look like a truncated value
to_be_removed.append(previous)
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
elif previous['text'].endswith(".") and current['text'][0].isdigit():
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous entity ends with ".", current entity starts with a number
to_be_removed.append(previous)
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
elif previous['text'].startswith("-"):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print("Other cases to be considered: ", previous, current)
else:
if current['text'].startswith("-"):
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print("Other cases to be considered: ", previous, current)
elif previous['text'] == "-" and current['text'][0].isdigit():
print(
f"Merging. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# previous starts with a `-`, sherlock this is another truncated value
current['text'] = previous['text'] + " " * (current['offset_start'] - previous['offset_end']) + \
current['text']
current['raw_value'] = current['text']
current['offset_start'] = previous['offset_start']
to_be_removed.append(previous)
else:
print(
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
# take the largest one
if len(previous['text']) > len(current['text']):
to_be_removed.append(current)
elif len(previous['text']) < len(current['text']):
to_be_removed.append(previous)
else:
to_be_removed.append(previous)
elif current['type'] != previous['type']:
print(
f"Overlapping. {current['text']} <{current['type']}> with {previous['text']} <{previous['type']}>")
if len(previous['text']) > len(current['text']):
to_be_removed.append(current)
elif len(previous['text']) < len(current['text']):
to_be_removed.append(previous)
else:
if current['type'] == "material":
to_be_removed.append(previous)
else:
to_be_removed.append(current)
previous = current
elif previous['offset_end'] > current['offset_end']:
to_be_removed.append(current)
# the previous goes after the current, so we keep the previous and we discard the current
else:
if current['type'] == "material":
to_be_removed.append(previous)
else:
to_be_removed.append(current)
previous = current
new_sorted_entities = [e for e in sorted_entities if e not in to_be_removed]
return new_sorted_entities
class XmlProcessor(BaseProcessor):
def __init__(self, grobid_superconductors_client, grobid_quantities_client):
super().__init__(grobid_superconductors_client, grobid_quantities_client)
def process_structure(self, input_file):
text = ""
with open(input_file, encoding='utf-8') as fi:
text = fi.read()
output_data = self.parse_xml(text)
output_data['filename'] = Path(input_file).stem.replace(".tei", "")
return output_data
def process_single(self, input_file):
doc = self.process_structure(input_file)
for paragraph in doc['passages']:
entities = self.process_single_text(paragraph['text'])
paragraph['spans'] = entities
return doc
def parse_xml(self, text):
output_data = OrderedDict()
soup = BeautifulSoup(text, 'xml')
text_blocks_children = get_children_list_supermat(soup, verbose=False)
passages = []
output_data['passages'] = passages
passages.extend([
{
"text": self.post_process(''.join(text for text in sentence.find_all(text=True) if
text.parent.name != "ref" or (
text.parent.name == "ref" and text.parent.attrs[
'type'] != 'bibr'))),
"type": "paragraph",
"section": "<body>",
"subSection": "<paragraph>",
"passage_id": str(paragraph_id) + str(sentence_id)
}
for paragraph_id, paragraph in enumerate(text_blocks_children) for
sentence_id, sentence in enumerate(paragraph)
])
return output_data
def get_children_list_supermat(soup, use_paragraphs=False, verbose=False):
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.tei.children:
if child.name == 'teiHeader':
pass
children.append(child.find_all("title"))
children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
children.extend([subchild.find_all(child_name) for subchild in child.find_all("ab", {"type": "keywords"})])
elif child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_list_grobid(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'teiHeader':
pass
# children.extend(child.find_all("title", attrs={"level": "a"}, limit=1))
# children.extend([subchild.find_all(child_name) for subchild in child.find_all("abstract")])
elif child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_body(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'text':
children.extend([subchild.find_all(child_name) for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children
def get_children_figures(soup: object, use_paragraphs: object = True, verbose: object = False) -> object:
children = []
child_name = "p" if use_paragraphs else "s"
for child in soup.TEI.children:
if child.name == 'text':
children.extend([subchild.find_all("figDesc") for subchild in child.find_all("body")])
if verbose:
print(str(children))
return children |