Spaces:
Running
Running
File size: 9,187 Bytes
e8ebf39 844c34d 452072e e8ebf39 844c34d e8ebf39 844c34d e8ebf39 b2f5314 844c34d b2f5314 844c34d b2f5314 844c34d b2f5314 7cdc620 41803fb 844c34d e8ebf39 7cdc620 b2f5314 e8ebf39 7cdc620 844c34d 7cdc620 844c34d b2f5314 844c34d 41803fb 844c34d b2f5314 844c34d 41803fb 844c34d b2f5314 e8ebf39 844c34d e8ebf39 182ca2f e8ebf39 844c34d 182ca2f e8ebf39 844c34d 7cdc620 182ca2f e8ebf39 844c34d 182ca2f e8ebf39 844c34d 182ca2f e8ebf39 7cdc620 e8ebf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from hashlib import blake2b
from tempfile import NamedTemporaryFile
import dotenv
from langchain.llms.huggingface_hub import HuggingFaceHub
dotenv.load_dotenv(override=True)
import streamlit as st
from langchain.chat_models import PromptLayerChatOpenAI
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
from document_qa_engine import DocumentQAEngine
if 'rqa' not in st.session_state:
st.session_state['rqa'] = None
if 'api_key' not in st.session_state:
st.session_state['api_key'] = False
if 'doc_id' not in st.session_state:
st.session_state['doc_id'] = None
if 'loaded_embeddings' not in st.session_state:
st.session_state['loaded_embeddings'] = None
if 'hash' not in st.session_state:
st.session_state['hash'] = None
if 'git_rev' not in st.session_state:
st.session_state['git_rev'] = "unknown"
if os.path.exists("revision.txt"):
with open("revision.txt", 'r') as fr:
from_file = fr.read()
st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"
if "messages" not in st.session_state:
st.session_state.messages = []
def new_file():
st.session_state['loaded_embeddings'] = None
st.session_state['doc_id'] = None
@st.cache_resource
def init_qa(model):
if model == 'chatgpt-3.5-turbo':
chat = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo",
temperature=0,
return_pl_id=True,
pl_tags=["streamlit", "chatgpt"])
embeddings = OpenAIEmbeddings()
elif model == 'mistral-7b-instruct-v0.1':
chat = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.1",
model_kwargs={"temperature": 0.01, "max_length": 4096, "max_new_tokens": 2048})
embeddings = HuggingFaceEmbeddings(
model_name="all-MiniLM-L6-v2")
elif model == 'llama-2-70b-chat':
chat = HuggingFaceHub(repo_id="meta-llama/Llama-2-70b-chat-hf",
model_kwargs={"temperature": 0.01, "max_length": 4096, "max_new_tokens": 2048})
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
else:
st.error("The model was not loaded properly. Try reloading. ")
return DocumentQAEngine(chat, embeddings, grobid_url=os.environ['GROBID_URL'])
def get_file_hash(fname):
hash_md5 = blake2b()
with open(fname, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def play_old_messages():
if st.session_state['messages']:
for message in st.session_state['messages']:
if message['role'] == 'user':
with st.chat_message("user"):
st.markdown(message['content'])
elif message['role'] == 'assistant':
with st.chat_message("assistant"):
if mode == "LLM":
st.markdown(message['content'])
else:
st.write(message['content'])
is_api_key_provided = st.session_state['api_key']
model = st.sidebar.radio("Model (cannot be changed after selection or upload)",
("chatgpt-3.5-turbo", "mistral-7b-instruct-v0.1", "llama-2-70b-chat"),
index=1,
captions=[
"ChatGPT 3.5 Turbo + Ada-002-text (embeddings)",
"Mistral-7B-Instruct-V0.1 + Sentence BERT (embeddings)",
"LLama2-70B-Chat + Sentence BERT (embeddings)",
],
help="Select the model you want to use.",
disabled=is_api_key_provided)
if not st.session_state['api_key']:
if model == 'mistral-7b-instruct-v0.1' or model == 'llama-2-70b-chat':
api_key = st.sidebar.text_input('Huggingface API Key')# if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ else os.environ['HUGGINGFACEHUB_API_TOKEN']
if api_key:
st.session_state['api_key'] = is_api_key_provided = True
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
st.session_state['rqa'] = init_qa(model)
elif model == 'chatgpt-3.5-turbo':
api_key = st.sidebar.text_input('OpenAI API Key') #if 'OPENAI_API_KEY' not in os.environ else os.environ['OPENAI_API_KEY']
if api_key:
st.session_state['api_key'] = is_api_key_provided = True
os.environ['OPENAI_API_KEY'] = api_key
st.session_state['rqa'] = init_qa(model)
else:
is_api_key_provided = st.session_state['api_key']
st.title("📝 Scientific Document Insight Q&A")
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
upload_col, radio_col, context_col = st.columns([7, 2, 2])
with upload_col:
uploaded_file = st.file_uploader("Upload an article", type=("pdf", "txt"), on_change=new_file,
disabled=not is_api_key_provided,
help="The full-text is extracted using Grobid. ")
with radio_col:
mode = st.radio("Query mode", ("LLM", "Embeddings"), disabled=not uploaded_file, index=0,
help="LLM will respond the question, Embedding will show the "
"paragraphs relevant to the question in the paper.")
with context_col:
context_size = st.slider("Context size", 3, 10, value=4,
help="Number of paragraphs to consider when answering a question",
disabled=not uploaded_file)
question = st.chat_input(
"Ask something about the article",
# placeholder="Can you give me a short summary?",
disabled=not uploaded_file
)
with st.sidebar:
st.header("Documentation")
st.markdown("https://github.com/lfoppiano/document-qa")
st.markdown(
"""After entering your API Key (Open AI or Huggingface). Upload a scientific article as PDF document. You will see a spinner or loading indicator while the processing is in progress. Once the spinner stops, you can proceed to ask your questions.""")
st.markdown("**Revision number**: [" + st.session_state[
'git_rev'] + "](https://github.com/lfoppiano/grobid-magneto/commit/" + st.session_state['git_rev'] + ")")
st.header("Query mode (Advanced use)")
st.markdown(
"""By default, the mode is set to LLM (Language Model) which enables question/answering. You can directly ask questions related to the document content, and the system will answer the question using content from the document.""")
st.markdown(
"""If you switch the mode to "Embedding," the system will return specific chunks from the document that are semantically related to your query. This mode helps to test why sometimes the answers are not satisfying or incomplete. """)
if uploaded_file and not st.session_state.loaded_embeddings:
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
binary = uploaded_file.getvalue()
tmp_file = NamedTemporaryFile()
tmp_file.write(bytearray(binary))
# hash = get_file_hash(tmp_file.name)[:10]
st.session_state['doc_id'] = hash = st.session_state['rqa'].create_memory_embeddings(tmp_file.name,
chunk_size=250,
perc_overlap=0.1)
st.session_state['loaded_embeddings'] = True
# timestamp = datetime.utcnow()
if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
if message['mode'] == "LLM":
st.markdown(message["content"])
elif message['mode'] == "Embeddings":
st.write(message["content"])
text_response = None
if mode == "Embeddings":
text_response = st.session_state['rqa'].query_storage(question, st.session_state.doc_id,
context_size=context_size)
elif mode == "LLM":
_, text_response = st.session_state['rqa'].query_document(question, st.session_state.doc_id,
context_size=context_size)
if not text_response:
st.error("Something went wrong. Contact Luca Foppiano (Foppiano.Luca@nims.co.jp) to report the issue.")
with st.chat_message("user"):
st.markdown(question)
st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
with st.chat_message("assistant"):
if mode == "LLM":
st.markdown(text_response)
else:
st.write(text_response)
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
elif st.session_state.loaded_embeddings and st.session_state.doc_id:
play_old_messages()
|