Spaces:
Running
Running
Merge pull request #7 from lfoppiano/move-settings-sidebar
Browse files- streamlit_app.py +120 -62
streamlit_app.py
CHANGED
@@ -18,10 +18,13 @@ from document_qa.grobid_processors import GrobidAggregationProcessor, decorate_t
|
|
18 |
from grobid_client_generic import GrobidClientGeneric
|
19 |
|
20 |
if 'rqa' not in st.session_state:
|
21 |
-
st.session_state['rqa'] =
|
22 |
|
23 |
-
if '
|
24 |
-
st.session_state['
|
|
|
|
|
|
|
25 |
|
26 |
if 'doc_id' not in st.session_state:
|
27 |
st.session_state['doc_id'] = None
|
@@ -42,13 +45,31 @@ if 'git_rev' not in st.session_state:
|
|
42 |
if "messages" not in st.session_state:
|
43 |
st.session_state.messages = []
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def new_file():
|
47 |
st.session_state['loaded_embeddings'] = None
|
48 |
st.session_state['doc_id'] = None
|
|
|
49 |
|
50 |
|
51 |
-
@st.cache_resource
|
52 |
def init_qa(model):
|
53 |
if model == 'chatgpt-3.5-turbo':
|
54 |
chat = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo",
|
@@ -67,6 +88,7 @@ def init_qa(model):
|
|
67 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
68 |
else:
|
69 |
st.error("The model was not loaded properly. Try reloading. ")
|
|
|
70 |
|
71 |
return DocumentQAEngine(chat, embeddings, grobid_url=os.environ['GROBID_URL'])
|
72 |
|
@@ -94,7 +116,6 @@ def init_ner():
|
|
94 |
grobid_quantities_client=quantities_client,
|
95 |
grobid_superconductors_client=materials_client
|
96 |
)
|
97 |
-
|
98 |
return gqa
|
99 |
|
100 |
|
@@ -123,53 +144,70 @@ def play_old_messages():
|
|
123 |
st.write(message['content'])
|
124 |
|
125 |
|
126 |
-
is_api_key_provided = st.session_state['api_key']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
index=1,
|
131 |
-
captions=[
|
132 |
-
"ChatGPT 3.5 Turbo + Ada-002-text (embeddings)",
|
133 |
-
"Mistral-7B-Instruct-V0.1 + Sentence BERT (embeddings)"
|
134 |
-
# "LLama2-70B-Chat + Sentence BERT (embeddings)",
|
135 |
-
],
|
136 |
-
help="Select the model you want to use.",
|
137 |
-
disabled=is_api_key_provided)
|
138 |
|
139 |
-
if not st.session_state['api_key']:
|
140 |
if model == 'mistral-7b-instruct-v0.1' or model == 'llama-2-70b-chat':
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
if api_key:
|
144 |
-
st.session_state['api_key'] = is_api_key_provided = True
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
147 |
elif model == 'chatgpt-3.5-turbo':
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
150 |
if api_key:
|
151 |
-
st.session_state['api_key'] = is_api_key_provided = True
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
|
|
|
|
156 |
|
157 |
st.title("📝 Scientific Document Insight Q&A")
|
158 |
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
mode = st.radio("Query mode", ("LLM", "Embeddings"), disabled=not uploaded_file, index=0,
|
167 |
-
help="LLM will respond the question, Embedding will show the "
|
168 |
-
"paragraphs relevant to the question in the paper.")
|
169 |
-
with context_col:
|
170 |
-
context_size = st.slider("Context size", 3, 10, value=4,
|
171 |
-
help="Number of paragraphs to consider when answering a question",
|
172 |
-
disabled=not uploaded_file)
|
173 |
|
174 |
question = st.chat_input(
|
175 |
"Ask something about the article",
|
@@ -178,14 +216,29 @@ question = st.chat_input(
|
|
178 |
)
|
179 |
|
180 |
with st.sidebar:
|
181 |
-
st.header("
|
182 |
-
st.
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
|
|
186 |
st.markdown(
|
187 |
'**NER on LLM responses**: The responses from the LLMs are post-processed to extract <span style="color:orange">physical quantities, measurements</span> and <span style="color:green">materials</span> mentions.',
|
188 |
unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
if st.session_state['git_rev'] != "unknown":
|
190 |
st.markdown("**Revision number**: [" + st.session_state[
|
191 |
'git_rev'] + "](https://github.com/lfoppiano/document-qa/commit/" + st.session_state['git_rev'] + ")")
|
@@ -198,14 +251,17 @@ with st.sidebar:
|
|
198 |
"""If you switch the mode to "Embedding," the system will return specific chunks from the document that are semantically related to your query. This mode helps to test why sometimes the answers are not satisfying or incomplete. """)
|
199 |
|
200 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
|
|
|
|
|
|
201 |
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
|
202 |
binary = uploaded_file.getvalue()
|
203 |
tmp_file = NamedTemporaryFile()
|
204 |
tmp_file.write(bytearray(binary))
|
205 |
# hash = get_file_hash(tmp_file.name)[:10]
|
206 |
-
st.session_state['doc_id'] = hash = st.session_state['rqa'].create_memory_embeddings(tmp_file.name,
|
207 |
-
|
208 |
-
|
209 |
st.session_state['loaded_embeddings'] = True
|
210 |
st.session_state.messages = []
|
211 |
|
@@ -218,6 +274,9 @@ if st.session_state.loaded_embeddings and question and len(question) > 0 and st.
|
|
218 |
st.markdown(message["content"], unsafe_allow_html=True)
|
219 |
elif message['mode'] == "Embeddings":
|
220 |
st.write(message["content"])
|
|
|
|
|
|
|
221 |
|
222 |
with st.chat_message("user"):
|
223 |
st.markdown(question)
|
@@ -226,27 +285,26 @@ if st.session_state.loaded_embeddings and question and len(question) > 0 and st.
|
|
226 |
text_response = None
|
227 |
if mode == "Embeddings":
|
228 |
with st.spinner("Generating LLM response..."):
|
229 |
-
text_response = st.session_state['rqa'].query_storage(question, st.session_state.doc_id,
|
230 |
-
|
231 |
elif mode == "LLM":
|
232 |
with st.spinner("Generating response..."):
|
233 |
-
_, text_response = st.session_state['rqa'].query_document(question, st.session_state.doc_id,
|
234 |
-
|
235 |
|
236 |
if not text_response:
|
237 |
st.error("Something went wrong. Contact Luca Foppiano (Foppiano.Luca@nims.co.jp) to report the issue.")
|
238 |
|
239 |
with st.chat_message("assistant"):
|
240 |
if mode == "LLM":
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
text_response = decorated_text
|
250 |
else:
|
251 |
st.write(text_response)
|
252 |
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|
|
|
18 |
from grobid_client_generic import GrobidClientGeneric
|
19 |
|
20 |
if 'rqa' not in st.session_state:
|
21 |
+
st.session_state['rqa'] = {}
|
22 |
|
23 |
+
if 'model' not in st.session_state:
|
24 |
+
st.session_state['model'] = None
|
25 |
+
|
26 |
+
if 'api_keys' not in st.session_state:
|
27 |
+
st.session_state['api_keys'] = {}
|
28 |
|
29 |
if 'doc_id' not in st.session_state:
|
30 |
st.session_state['doc_id'] = None
|
|
|
45 |
if "messages" not in st.session_state:
|
46 |
st.session_state.messages = []
|
47 |
|
48 |
+
if 'ner_processing' not in st.session_state:
|
49 |
+
st.session_state['ner_processing'] = False
|
50 |
+
|
51 |
+
if 'uploaded' not in st.session_state:
|
52 |
+
st.session_state['uploaded'] = False
|
53 |
+
|
54 |
+
st.set_page_config(
|
55 |
+
page_title="Document Insights QA",
|
56 |
+
page_icon="📝",
|
57 |
+
initial_sidebar_state="expanded",
|
58 |
+
menu_items={
|
59 |
+
'Get Help': 'https://github.com/lfoppiano/document-qa',
|
60 |
+
'Report a bug': "https://github.com/lfoppiano/document-qa/issues",
|
61 |
+
'About': "Upload a scientific article in PDF, ask questions, get insights."
|
62 |
+
}
|
63 |
+
)
|
64 |
+
|
65 |
|
66 |
def new_file():
|
67 |
st.session_state['loaded_embeddings'] = None
|
68 |
st.session_state['doc_id'] = None
|
69 |
+
st.session_state['uploaded'] = True
|
70 |
|
71 |
|
72 |
+
# @st.cache_resource
|
73 |
def init_qa(model):
|
74 |
if model == 'chatgpt-3.5-turbo':
|
75 |
chat = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo",
|
|
|
88 |
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
89 |
else:
|
90 |
st.error("The model was not loaded properly. Try reloading. ")
|
91 |
+
st.stop()
|
92 |
|
93 |
return DocumentQAEngine(chat, embeddings, grobid_url=os.environ['GROBID_URL'])
|
94 |
|
|
|
116 |
grobid_quantities_client=quantities_client,
|
117 |
grobid_superconductors_client=materials_client
|
118 |
)
|
|
|
119 |
return gqa
|
120 |
|
121 |
|
|
|
144 |
st.write(message['content'])
|
145 |
|
146 |
|
147 |
+
# is_api_key_provided = st.session_state['api_key']
|
148 |
+
|
149 |
+
with st.sidebar:
|
150 |
+
st.session_state['model'] = model = st.radio(
|
151 |
+
"Model",
|
152 |
+
("chatgpt-3.5-turbo", "mistral-7b-instruct-v0.1"), # , "llama-2-70b-chat"),
|
153 |
+
index=1,
|
154 |
+
captions=[
|
155 |
+
"ChatGPT 3.5 Turbo + Ada-002-text (embeddings)",
|
156 |
+
"Mistral-7B-Instruct-V0.1 + Sentence BERT (embeddings) :free:"
|
157 |
+
# "LLama2-70B-Chat + Sentence BERT (embeddings) :free:",
|
158 |
+
],
|
159 |
+
help="Select the LLM model and embeddings you want to use.",
|
160 |
+
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded'])
|
161 |
|
162 |
+
st.markdown(
|
163 |
+
":warning: Mistral is free to use, however requests might hit limits of the huggingface free API and fail. :warning: ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
|
|
165 |
if model == 'mistral-7b-instruct-v0.1' or model == 'llama-2-70b-chat':
|
166 |
+
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
167 |
+
api_key = st.text_input('Huggingface API Key', type="password")
|
168 |
+
|
169 |
+
st.markdown(
|
170 |
+
"Get it [here](https://huggingface.co/docs/hub/security-tokens)")
|
171 |
+
else:
|
172 |
+
api_key = os.environ['HUGGINGFACEHUB_API_TOKEN']
|
173 |
+
|
174 |
if api_key:
|
175 |
+
# st.session_state['api_key'] = is_api_key_provided = True
|
176 |
+
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
|
177 |
+
with st.spinner("Preparing environment"):
|
178 |
+
st.session_state['api_keys'][model] = api_key
|
179 |
+
if 'HUGGINGFACEHUB_API_TOKEN' not in os.environ:
|
180 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_key
|
181 |
+
st.session_state['rqa'][model] = init_qa(model)
|
182 |
+
|
183 |
elif model == 'chatgpt-3.5-turbo':
|
184 |
+
if 'OPENAI_API_KEY' not in os.environ:
|
185 |
+
api_key = st.text_input('OpenAI API Key', type="password")
|
186 |
+
st.markdown(
|
187 |
+
"Get it [here](https://platform.openai.com/account/api-keys)")
|
188 |
+
else:
|
189 |
+
api_key = os.environ['OPENAI_API_KEY']
|
190 |
+
|
191 |
if api_key:
|
192 |
+
# st.session_state['api_key'] = is_api_key_provided = True
|
193 |
+
if model not in st.session_state['rqa'] or model not in st.session_state['api_keys']:
|
194 |
+
with st.spinner("Preparing environment"):
|
195 |
+
st.session_state['api_keys'][model] = api_key
|
196 |
+
if 'OPENAI_API_KEY' not in os.environ:
|
197 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
198 |
+
st.session_state['rqa'][model] = init_qa(model)
|
199 |
+
# else:
|
200 |
+
# is_api_key_provided = st.session_state['api_key']
|
201 |
|
202 |
st.title("📝 Scientific Document Insight Q&A")
|
203 |
st.subheader("Upload a scientific article in PDF, ask questions, get insights.")
|
204 |
|
205 |
+
st.markdown(":warning: Do not upload sensitive data. We **temporarily** store text from the uploaded PDF documents solely for the purpose of processing your request, and we **do not assume responsibility** for any subsequent use or handling of the data submitted to third parties LLMs.")
|
206 |
+
|
207 |
+
uploaded_file = st.file_uploader("Upload an article", type=("pdf", "txt"), on_change=new_file,
|
208 |
+
disabled=st.session_state['model'] is not None and st.session_state['model'] not in
|
209 |
+
st.session_state['api_keys'],
|
210 |
+
help="The full-text is extracted using Grobid. ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
question = st.chat_input(
|
213 |
"Ask something about the article",
|
|
|
216 |
)
|
217 |
|
218 |
with st.sidebar:
|
219 |
+
st.header("Settings")
|
220 |
+
mode = st.radio("Query mode", ("LLM", "Embeddings"), disabled=not uploaded_file, index=0, horizontal=True,
|
221 |
+
help="LLM will respond the question, Embedding will show the "
|
222 |
+
"paragraphs relevant to the question in the paper.")
|
223 |
+
chunk_size = st.slider("Chunks size", 100, 2000, value=250,
|
224 |
+
help="Size of chunks in which the document is partitioned",
|
225 |
+
disabled=uploaded_file is not None)
|
226 |
+
context_size = st.slider("Context size", 3, 10, value=4,
|
227 |
+
help="Number of chunks to consider when answering a question",
|
228 |
+
disabled=not uploaded_file)
|
229 |
|
230 |
+
st.session_state['ner_processing'] = st.checkbox("Named Entities Recognition (NER) processing on LLM response")
|
231 |
st.markdown(
|
232 |
'**NER on LLM responses**: The responses from the LLMs are post-processed to extract <span style="color:orange">physical quantities, measurements</span> and <span style="color:green">materials</span> mentions.',
|
233 |
unsafe_allow_html=True)
|
234 |
+
|
235 |
+
st.divider()
|
236 |
+
|
237 |
+
st.header("Documentation")
|
238 |
+
st.markdown("https://github.com/lfoppiano/document-qa")
|
239 |
+
st.markdown(
|
240 |
+
"""Upload a scientific article as PDF document. Once the spinner stops, you can proceed to ask your questions.""")
|
241 |
+
|
242 |
if st.session_state['git_rev'] != "unknown":
|
243 |
st.markdown("**Revision number**: [" + st.session_state[
|
244 |
'git_rev'] + "](https://github.com/lfoppiano/document-qa/commit/" + st.session_state['git_rev'] + ")")
|
|
|
251 |
"""If you switch the mode to "Embedding," the system will return specific chunks from the document that are semantically related to your query. This mode helps to test why sometimes the answers are not satisfying or incomplete. """)
|
252 |
|
253 |
if uploaded_file and not st.session_state.loaded_embeddings:
|
254 |
+
if model not in st.session_state['api_keys']:
|
255 |
+
st.error("Before uploading a document, you must enter the API key. ")
|
256 |
+
st.stop()
|
257 |
with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
|
258 |
binary = uploaded_file.getvalue()
|
259 |
tmp_file = NamedTemporaryFile()
|
260 |
tmp_file.write(bytearray(binary))
|
261 |
# hash = get_file_hash(tmp_file.name)[:10]
|
262 |
+
st.session_state['doc_id'] = hash = st.session_state['rqa'][model].create_memory_embeddings(tmp_file.name,
|
263 |
+
chunk_size=chunk_size,
|
264 |
+
perc_overlap=0.1)
|
265 |
st.session_state['loaded_embeddings'] = True
|
266 |
st.session_state.messages = []
|
267 |
|
|
|
274 |
st.markdown(message["content"], unsafe_allow_html=True)
|
275 |
elif message['mode'] == "Embeddings":
|
276 |
st.write(message["content"])
|
277 |
+
if model not in st.session_state['rqa']:
|
278 |
+
st.error("The API Key for the " + model + " is missing. Please add it before sending any query. `")
|
279 |
+
st.stop()
|
280 |
|
281 |
with st.chat_message("user"):
|
282 |
st.markdown(question)
|
|
|
285 |
text_response = None
|
286 |
if mode == "Embeddings":
|
287 |
with st.spinner("Generating LLM response..."):
|
288 |
+
text_response = st.session_state['rqa'][model].query_storage(question, st.session_state.doc_id,
|
289 |
+
context_size=context_size)
|
290 |
elif mode == "LLM":
|
291 |
with st.spinner("Generating response..."):
|
292 |
+
_, text_response = st.session_state['rqa'][model].query_document(question, st.session_state.doc_id,
|
293 |
+
context_size=context_size)
|
294 |
|
295 |
if not text_response:
|
296 |
st.error("Something went wrong. Contact Luca Foppiano (Foppiano.Luca@nims.co.jp) to report the issue.")
|
297 |
|
298 |
with st.chat_message("assistant"):
|
299 |
if mode == "LLM":
|
300 |
+
if st.session_state['ner_processing']:
|
301 |
+
with st.spinner("Processing NER on LLM response..."):
|
302 |
+
entities = gqa.process_single_text(text_response)
|
303 |
+
decorated_text = decorate_text_with_annotations(text_response.strip(), entities)
|
304 |
+
decorated_text = decorated_text.replace('class="label material"', 'style="color:green"')
|
305 |
+
decorated_text = re.sub(r'class="label[^"]+"', 'style="color:orange"', decorated_text)
|
306 |
+
text_response = decorated_text
|
307 |
+
st.markdown(text_response, unsafe_allow_html=True)
|
|
|
308 |
else:
|
309 |
st.write(text_response)
|
310 |
st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
|