Spaces:
Running
Running
fix load
Browse files
app.py
CHANGED
@@ -51,6 +51,10 @@ function setDataFrameReadonly() {
|
|
51 |
"""
|
52 |
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
|
53 |
|
|
|
|
|
|
|
|
|
54 |
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
|
55 |
if "(" in func:
|
56 |
prepared_func = func.split("(")
|
@@ -75,63 +79,94 @@ with gr.Blocks(css=css, js=js) as demo:
|
|
75 |
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
|
76 |
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
|
77 |
|
78 |
-
|
79 |
-
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
|
80 |
-
api = HfApi(token=oauth_token.token if oauth_token else None)
|
81 |
-
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
|
82 |
-
if oauth_token and (user := api.whoami().get("user")):
|
83 |
-
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
|
84 |
-
dataset = request.query_params.get("dataset") or datasets[0].id
|
85 |
-
return {dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset)}
|
86 |
-
|
87 |
-
@dataset_dropdown.change(inputs=dataset_dropdown, outputs=loading_codes_json)
|
88 |
-
def _fetch_read_parquet_loading(dataset: str):
|
89 |
if dataset and "/" not in dataset.strip().strip("/"):
|
90 |
return []
|
91 |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
|
92 |
-
|
93 |
-
|
94 |
-
@loading_codes_json.change(inputs=loading_codes_json, outputs=[subset_dropdown, split_dropdown])
|
95 |
-
def _show_subset_dropdown(loading_codes: list[dict]):
|
96 |
subsets = [loading_code["config_name"] for loading_code in loading_codes]
|
97 |
subset = (subsets or [""])[0]
|
98 |
-
|
99 |
-
split = (splits or [""])[0]
|
100 |
-
return gr.Dropdown(subsets, value=subset, visible=len(subsets) > 1), gr.Dropdown(splits, value=split, visible=len(splits) > 1)
|
101 |
|
102 |
-
|
103 |
-
def _show_split_dropdown(loading_codes: list[dict], subset: str):
|
104 |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
|
105 |
split = (splits or [""])[0]
|
106 |
-
return
|
107 |
-
|
108 |
-
|
109 |
-
@lru_cache(maxsize=3)
|
110 |
-
def _set_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
111 |
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
|
112 |
if dataset and subset and split and pattern:
|
113 |
-
df =
|
114 |
-
|
115 |
else:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
new_transform_dropdowns = [gr.Dropdown(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
|
121 |
-
new_transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
|
122 |
-
return new_transform_dropdowns
|
123 |
|
124 |
-
def
|
125 |
try:
|
126 |
-
|
127 |
-
# return input_df
|
128 |
-
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;")
|
129 |
except Exception as e:
|
130 |
-
|
|
|
131 |
|
132 |
for column_index, transform_dropdown in enumerate(transform_dropdowns):
|
133 |
-
transform_dropdown.
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
if __name__ == "__main__":
|
|
|
51 |
"""
|
52 |
text_functions_df = pd.read_csv("text_functions.tsv", delimiter="\t")
|
53 |
|
54 |
+
@lru_cache(maxsize=3)
|
55 |
+
def duckdb_sql(query: str) -> duckdb.DuckDBPyRelation:
|
56 |
+
return duckdb.sql(query)
|
57 |
+
|
58 |
def prepare_function(func: str, placeholder: str, column_name: str) -> str:
|
59 |
if "(" in func:
|
60 |
prepared_func = func.split("(")
|
|
|
79 |
transform_dropdowns += [gr.Dropdown(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(transform_dropdowns))]
|
80 |
dataframe = gr.DataFrame(EMPTY_DF, column_widths=[f"{1/len(EMPTY_DF.columns):.0%}"] * len(EMPTY_DF.columns), interactive=True, elem_classes="readonly-dataframe")
|
81 |
|
82 |
+
def show_subset_dropdown(dataset: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if dataset and "/" not in dataset.strip().strip("/"):
|
84 |
return []
|
85 |
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
|
86 |
+
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
|
|
|
|
|
|
|
87 |
subsets = [loading_code["config_name"] for loading_code in loading_codes]
|
88 |
subset = (subsets or [""])[0]
|
89 |
+
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
|
|
|
|
|
90 |
|
91 |
+
def show_split_dropdown(subset: str, loading_codes: list[dict]):
|
|
|
92 |
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
|
93 |
split = (splits or [""])[0]
|
94 |
+
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
|
95 |
+
|
96 |
+
def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
|
|
|
|
97 |
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
|
98 |
if dataset and subset and split and pattern:
|
99 |
+
df = duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT 10").df()
|
100 |
+
input_df = df
|
101 |
else:
|
102 |
+
input_df = EMPTY_DF
|
103 |
+
new_transform_dropdowns = [dict(choices=[column_name] + [prepare_function(text_func, "string", column_name) for text_func in text_functions_df.Name if "string" in text_func], value=column_name, container=False, interactive=True, allow_custom_value=True, visible=True) for column_name in input_df.columns]
|
104 |
+
new_transform_dropdowns += [dict(choices=[None], value=None, container=False, interactive=True, allow_custom_value=True, visible=False) for _ in range(MAX_NUM_COLUMNS - len(new_transform_dropdowns))]
|
105 |
+
return [dict(value=df, column_widths=[f"{1/len(df.columns):.0%}"] * len(df.columns))] + new_transform_dropdowns
|
|
|
|
|
|
|
106 |
|
107 |
+
def set_dataframe(input_df: pd.DataFrame, *transforms: tuple[str], column_index: int):
|
108 |
try:
|
109 |
+
return duckdb.sql(f"SELECT {', '.join(transform for transform in transforms if transform)} FROM input_df;").df()
|
|
|
|
|
110 |
except Exception as e:
|
111 |
+
gr.Error(f"{type(e).__name__}: {e}")
|
112 |
+
return input_df
|
113 |
|
114 |
for column_index, transform_dropdown in enumerate(transform_dropdowns):
|
115 |
+
transform_dropdown.select(partial(set_dataframe, column_index=column_index), inputs=[input_dataframe] + transform_dropdowns, outputs=dataframe)
|
116 |
|
117 |
+
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
118 |
+
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
|
119 |
+
api = HfApi(token=oauth_token.token if oauth_token else None)
|
120 |
+
datasets = list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"]))
|
121 |
+
if oauth_token and (user := api.whoami().get("name")):
|
122 |
+
datasets += list(api.list_datasets(limit=3, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
|
123 |
+
dataset = request.query_params.get("dataset") or datasets[0].id
|
124 |
+
subsets, loading_codes = show_subset_dropdown(dataset)
|
125 |
+
splits = show_split_dropdown(subsets["value"], loading_codes)
|
126 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
|
127 |
+
return {
|
128 |
+
dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
|
129 |
+
loading_codes_json: loading_codes,
|
130 |
+
subset_dropdown: gr.Dropdown(**subsets),
|
131 |
+
split_dropdown: gr.Dropdown(**splits),
|
132 |
+
input_dataframe: gr.DataFrame(**input_df),
|
133 |
+
dataframe: gr.DataFrame(**input_df),
|
134 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
135 |
+
}
|
136 |
+
|
137 |
+
@dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
138 |
+
def _show_subset_dropdown(dataset: str):
|
139 |
+
subsets, loading_codes = show_subset_dropdown(dataset)
|
140 |
+
splits = show_split_dropdown(subsets["value"], loading_codes)
|
141 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
|
142 |
+
return {
|
143 |
+
loading_codes_json: loading_codes,
|
144 |
+
subset_dropdown: gr.Dropdown(**subsets),
|
145 |
+
split_dropdown: gr.Dropdown(**splits),
|
146 |
+
input_dataframe: gr.DataFrame(**input_df),
|
147 |
+
dataframe: gr.DataFrame(**input_df),
|
148 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
149 |
+
}
|
150 |
+
|
151 |
+
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, input_dataframe, dataframe] + transform_dropdowns)
|
152 |
+
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
|
153 |
+
splits = show_split_dropdown(subset, loading_codes)
|
154 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
|
155 |
+
return {
|
156 |
+
split_dropdown: gr.Dropdown(**splits),
|
157 |
+
input_dataframe: gr.DataFrame(**input_df),
|
158 |
+
dataframe: gr.DataFrame(**input_df),
|
159 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
160 |
+
}
|
161 |
+
|
162 |
+
@split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[input_dataframe, dataframe] + transform_dropdowns)
|
163 |
+
def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
|
164 |
+
input_df, *new_transform_dropdowns = show_input_dataframe(dataset, subset, split, loading_codes)
|
165 |
+
return {
|
166 |
+
input_dataframe: gr.DataFrame(**input_df),
|
167 |
+
dataframe: gr.DataFrame(**input_df),
|
168 |
+
**dict(zip(transform_dropdowns, [gr.Dropdown(**new_transform_dropdown) for new_transform_dropdown in new_transform_dropdowns]))
|
169 |
+
}
|
170 |
|
171 |
|
172 |
if __name__ == "__main__":
|