Spaces:
Sleeping
Sleeping
File size: 35,076 Bytes
9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b c17cba8 9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 |
import uuid
import zipfile
from datetime import datetime
from pathlib import Path
from time import sleep, time
import torch
from email_validator import validate_email, EmailNotValidError
from Bio import SeqIO
import gradio as gr
from gradio_rangeslider import RangeSlider
from omegaconf import OmegaConf
import pandas as pd
from rdkit import Chem
from rdkit.Chem import PandasTools
from inference import (read_fragment_library, process_fragment_library, extract_pockets,
dock_fragments, generate_linkers, select_fragment_pairs)
from app import static, fn, db
gr.set_static_paths(paths=["data/", "results/"])
job_db = db.init_job_db()
FRAG_LIBS = {
lib_path.stem.replace('_', ' '): str(lib_path) for lib_path in Path('data/fragment_libraries').glob('*')
}
FRAG_LIB_PROCESS_OPTS = {
'Dehalogenate Fragments': 'dehalogenate',
'Discard Inorganic Fragments': 'discard_inorganic'
}
POCKET_EXTRACT_OPTS = {
'Topological Prediction with Fpocket': {
'name': 'fpocket',
'info': 'If your protein structure contains co-crystallized ligands, you may CLICK ON '
'the ligand with your desired binding pose to predict its corresponding pocket. '
'Otherwise, pockets will be predicted based on the protein structure alone. After extracting '
'the pocket(s), CLICK ON your desired pocket to SELECT ONE for fragment linking.',
'params': {}
},
'Fragment Conformer Clustering': {
'name': 'clustering',
'info': 'Conformers of docked fragments will be clustered based on their spatial similarity, and conformers '
'within a cluster will be selected for linking. This strategy takes delayed effect AFTER DOCKING.'
}
}
# TODO import from inference
def process_drug_library_upload(library_upload):
if library_upload.endswith('.csv'):
df = pd.read_csv(library_upload)
elif library_upload.endswith('.sdf'):
df = PandasTools.LoadSDF(
library_upload,
smilesName='X1', molColName='mol',
)
else:
raise gr.Error('Current supported fragment library formats only include CSV and SDF files.')
fn.validate_columns(df, ['X1'])
return df
def query_job_status(job_id):
gr.Info('Start querying the job database...')
stop = False
retry = 0
while not stop:
try:
sleep(5)
job = job_db.job_lookup(job_id)
if job:
if job['status'] == "RUNNING":
yield {
pred_lookup_status: f'''
Your job (ID: **{job['id']}**) started at **{job['start_time']}** and is **RUNNING...**
It might take a few minutes up to a few hours depending on the input size and the queue status.
You may keep the page open and wait for job completion, or close the page and revisit later to look up the job status
using the job id. You will also receive an email notification once the job is done.
''',
pred_lookup_btn: gr.Button(visible=False),
pred_lookup_stop_btn: gr.Button(visible=True)
}
if job['status'] == "COMPLETED":
stop = True
msg = f"Your GenFBDD job (ID: {job['id']}) has been **COMPLETED**"
msg += f" at {job['end_time']}" if job.get('end_time') else ""
msg += f" and the results will expire by {job['expiry_time']}." if job.get('expiry_time') else "."
msg += f' Redirecting to the Results page...'
gr.Info(msg)
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='result'),
result_state: job
}
if job['status'] == "FAILED":
stop = True
msg = f'Your GenFBDD job (ID: {job_id}) has **FAILED**'
msg += f" at {job['end_time']}" if job.get('end_time') else ''
msg += f" due to error: {job['error']}." if job.get('expiry_time') else '.'
gr.Info(msg)
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='job'),
}
else:
stop = (retry > 3)
if not stop:
msg = f'Job ID {job_id} not found. Retrying... ({retry})'
else:
msg = f'Job ID {job_id} not found after {retry} retries. Please double-check the job ID.'
gr.Info(msg)
retry += 1
yield {
pred_lookup_status: msg,
pred_lookup_btn: gr.Button(visible=True),
pred_lookup_stop_btn: gr.Button(visible=False),
tabs: gr.Tabs(selected='job'),
}
except Exception as e:
raise gr.Error(f'Failed to retrieve job status due to error: {str(e)}')
def checkbox_group_selections_to_kwargs(selected_options, option_mapping):
kwargs = {
option_mapping[label]: label in selected_options
for label in option_mapping
}
return kwargs
def job_validate(
frag_file, frag_df, prot_file,
pocket_name, pocket_method, pocket_fs,
email, run_info, session_info: gr.Request
):
if len(frag_df) == 0 or not frag_file:
raise gr.Error("Please provide a valid fragment library.")
if not prot_file:
raise gr.Error("Please provide a valid protein structure.")
pocket_extraction_method = POCKET_EXTRACT_OPTS[pocket_method]['name']
pocket_path_dict = {}
if pocket_extraction_method == 'fpocket':
if not pocket_name or not pocket_fs:
raise gr.Error("If you wish to use a protein pocket predicted by Fpocket, "
"please select a pocket after clicking on 'Extract Pocket'.")
else:
for pocket_file in pocket_fs:
if Path(pocket_file).stem.startswith(pocket_name):
pocket_path_dict[pocket_name] = pocket_file
if email:
try:
email_info = validate_email(email, check_deliverability=False)
email = email_info.normalized
except EmailNotValidError as e:
raise gr.Error(f"Invalid email address: {str(e)}.")
if run_info:
raise gr.Error(f"You already have a running prediction job (ID: {run_info['id']}) under this session. "
"Please wait for it to complete before submitting another job.")
if check := job_db.check_user_running_job(email, session_info):
raise gr.Error(check)
gr.Info('Finished processing inputs. Initiating the GenFBDD job... '
'You will be redirected to Job Status page.')
job_id = str(uuid.uuid4())
job_info = {
'id': job_id,
'status': 'RUNNING',
'fragment_library_file': frag_file,
'protein_structure_file': prot_file,
'pocket_extraction_method': pocket_extraction_method,
'protein_pocket_files': pocket_path_dict,
'email': email,
'ip': session_info.headers.get('x-forwarded-for', session_info.client.host),
'cookies': dict(session_info.cookies),
'start_time': time(),
'end_time': None,
'expiry_time': None,
'error': None
}
job_db.insert(job_info)
return job_info
def dock_link(
frag_lib, prot,
dock_n_steps, dock_n_poses, dock_confidence_threshold,
linker_frag_dist, linker_strategy, linker_n_mols, linker_size, linker_steps,
job_info
):
job_id = job_info['id']
pocket_extract_method = job_info['pocket_extraction_method']
pocket_path_dict = job_info['protein_pocket_files']
update_info = {}
config = OmegaConf.load('configs/gen_fbdd_v1.yaml')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device: {device}')
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S.%f")
out_dir = f'results/{date_time}'
frag_lib['X2'] = prot
frag_lib['ID2'] = Path(prot).stem
try:
docking_df = dock_fragments(
df=frag_lib, out_dir=out_dir,
score_ckpt=config.score_ckpt, confidence_ckpt=config.confidence_ckpt,
inference_steps=dock_n_steps, n_poses=dock_n_poses,
docking_batch_size=config.docking_batch_size,
initial_noise_std_proportion=config.initial_noise_std_proportion,
no_final_step_noise=config.no_final_step_noise,
temp_sampling_tr=config.temp_sampling_tr,
temp_sampling_rot=config.temp_sampling_rot,
temp_sampling_tor=config.temp_sampling_tor,
temp_psi_tr=config.temp_psi_tr,
temp_psi_rot=config.temp_psi_rot,
temp_psi_tor=config.temp_psi_tor,
temp_sigma_data_tr=config.temp_sigma_data_tr,
temp_sigma_data_rot=config.temp_sigma_data_rot,
temp_sigma_data_tor=config.temp_sigma_data_tor,
save_docking=pocket_extract_method == 'clustering', device=device,
)
linking_df = select_fragment_pairs(
docking_df,
method=pocket_extract_method,
pocket_path_dict=pocket_path_dict,
frag_dist_range=linker_frag_dist,
confidence_threshold=dock_confidence_threshold,
rmsd_threshold=1.5,
out_dir=out_dir,
)
if linking_df is not None and len(linking_df) > 0:
# Generate linkers
generate_linkers(
linking_df,
backbone_atoms_only=True,
output_dir=out_dir,
n_samples=linker_n_mols,
n_steps=linker_steps,
linker_size=linker_size,
anchors=None,
max_batch_size=config.linker_batch_size,
random_seed=None,
robust=False,
linker_ckpt=config.linker_ckpt,
size_ckpt=config.size_ckpt,
linker_condition=None,
device=device,
)
job_type = 'linking'
else:
gr.Warning('No fragment-conformer pairs found for linking. Please adjust the docking / linking settings.')
job_type = 'docking'
update_info = {
'status': "COMPLETED",
'error': None,
'output_dir': out_dir,
'type': job_type,
}
return {result_state: job_info | update_info, run_state: {}}
except Exception as e:
gr.Warning(f"Job failed due to error: {str(e)}")
update_info = {
'status': "FAILED",
'error': str(e),
'output_dir': None
}
return {result_state: {}, run_state: {}}
finally:
job_db.job_update(
job_id=job_id,
update_info=update_info
)
def get_session_state(request: gr.Request):
return request
THEME = gr.themes.Base(
spacing_size="sm", text_size='md', font=gr.themes.GoogleFont("Roboto"),
primary_hue='emerald', secondary_hue='emerald', neutral_hue='slate',
).set(
body_background_fill='*primary_50'
# background_fill_primary='#eef3f9',
# background_fill_secondary='white',
# checkbox_label_background_fill='#eef3f9',
# checkbox_label_background_fill_hover='#dfe6f0',
# checkbox_background_color='white',
# checkbox_border_color='#4372c4',
# border_color_primary='#4372c4',
# border_color_accent='#2e6ab5',
# button_primary_background_fill='#2e6ab4',
# button_primary_text_color='white',
# body_text_color='#28496F',
# block_background_fill='#fbfcfd',
# block_title_text_color='#28496F',
# block_label_text_color='#28496F',
# block_info_text_color='#505358',
# block_border_color=None,
# input_border_color='#4372c4',
# panel_border_color='#4372c4',
# input_background_fill='#F1F2F4',
)
with gr.Blocks(theme=THEME, title='GenFBDD', css=static.CSS, delete_cache=(3600, 48 * 3600)) as demo:
run_state = gr.State(value={})
session_state = gr.State(value={})
# script_init_frame = gr.HTML(static.PROTEIN_VIEW_IFRAME)
with gr.Tabs() as tabs:
with gr.Tab(label='Home', id='home'):
gr.Markdown('''
# GenFBDD - A Fragment-Based Drug Design Protocol Based on SOTA Molecular Generative Models
Given a fragment library and a target protein, GenFBDD blindly docks the fragments to the
protein and generates linkers connecting the selected fragments, generating novel scaffolds
or drug-like molecules with desirable binding conformations.
''')
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown('## Chemical Fragment Library')
# Fragment settings
frag_lib_dropdown = gr.Dropdown(
label='Select a Preset Fragment Library',
choices=list(FRAG_LIBS.keys()),
value=None,
)
# with gr.Row():
# gr.File(label='Example SDF fragment library',
# value='data/examples/fragment_library.sdf', interactive=False)
# gr.File(label='Example CSV fragment library',
# value='data/examples/fragment_library.csv', interactive=False)
frag_lib_upload_btn = gr.UploadButton(
label='OR Upload Your Own Library', variant='primary'
)
frag_lib_file = gr.File(
label='Fragment Library File (Original)', file_count='single', interactive=False, visible=False
)
frag_lib_orig_df = gr.State(value=pd.DataFrame())
frag_lib_mod_df = gr.State(value=pd.DataFrame())
# TODO: Tabulator with gr.HTML() for fragment library preview
frag_lib_view = gr.DataFrame(
visible=True, interactive=False,
elem_id='frag_lib_view',
)
with gr.Group():
frag_lib_process_opts = gr.CheckboxGroup(
label='Fragment Preparation Options',
info='1) All fragments consisting of multiple fragments will be split into individual '
'fragments. 2) All fragments consisting of a single heavy atom will be discarded. '
'3) All fragments will then be processed in the order of the selected options. '
'4) Finally, fragments will be deduplicated based on their SMILES.',
choices=list(FRAG_LIB_PROCESS_OPTS.keys()),
value=['Dehalogenate Fragments', 'Discard Inorganic Fragments'],
interactive=True,
)
frag_lib_process_btn = gr.Button(value='Process Fragments', variant='primary')
# Fragment library preview
with gr.Column(variant='panel'):
gr.Markdown('## Target Protein Structure')
# Protein settings
with gr.Row(equal_height=True):
prot_query_dropdown = gr.Dropdown(
label='Select a Protein Structure Query Strategy',
choices=[
'PDB ID',
'UniProt ID',
'FASTA Sequence',
],
interactive=True,
scale=4
)
prot_query_input = gr.Textbox(
show_label=False, placeholder='Enter the protein query here',
scale=3,
)
with gr.Row():
prot_query_btn = gr.Button(value='Query', variant='primary', scale=1)
prot_upload_btn = gr.UploadButton(
label='OR Upload Your PDB/FASTA File', variant='primary',
file_types=['.pdb', '.fasta'],
scale=2
)
input_prot_file = gr.File(
label='Protein Structure File (Original)', file_count='single',
interactive=False, visible=False
)
input_prot_view = gr.HTML('<div id="input_protein_view" class="mol-container"></div>')
with gr.Group():
pocket_extract_dropdown = gr.Dropdown(
label='Select a Pocket Extraction Method',
choices=list(POCKET_EXTRACT_OPTS.keys()),
info=POCKET_EXTRACT_OPTS[list(POCKET_EXTRACT_OPTS.keys())[0]]['info'],
value=list(POCKET_EXTRACT_OPTS.keys())[0],
interactive=True,
)
selected_pocket = gr.Textbox(visible=False)
selected_ligand = gr.Textbox(visible=False)
pocket_files = gr.Files(visible=False)
pocket_extract_btn = gr.Button(value='Extract Pocket', variant='primary')
# Target protein preview
with gr.Row():
with gr.Column(variant='panel'):
gr.Markdown('## Dock Phase Settings')
n_confs_per_frag = gr.Slider(
value=5, minimum=1, maximum=20, step=1,
label="Number of conformers to generate per fragment",
interactive=True
)
dock_confidence_cutoff = gr.Slider(
value=-1.0, minimum=-2.0, maximum=0, step=0.1,
label="Confidence cutoff for filtering conformers of docked fragments (>0: high, <=-1.5: low)",
interactive=True
)
with gr.Accordion(label='Advanced Options', open=False):
dock_model = gr.Dropdown(
label='Select a Fragment Docking Model',
choices=['DiffDock-L'],
interactive=True,
)
dock_steps = gr.Slider(
minimum=20, maximum=40, step=1,
label="Number of Denoising Steps for Docking Fragments",
interactive=True
)
with gr.Column(variant='panel'):
gr.Markdown('## Link Phase Settings')
frag_conf_combo_strategy = gr.Radio(
label='Select a Fragment-Conformer Linking Strategy',
choices=[
'Link Pairs of Fragment-Conformers Contacting the Pocket',
# 'Link Maximal Fragment-Conformers Spanning the Entire Pocket',
],
value='Link Pairs of Fragment-Conformers Contacting the Pocket',
)
frag_dist_range_slider = RangeSlider(
value=[2, 8], minimum=1, maximum=10, step=1,
label="Fragment-Conformer Distance Range (Å) Eligible for Linking",
interactive=True
)
n_mols_per_combo_slider = gr.Slider(
value=10, minimum=1, maximum=20, step=1,
label="Number of molecules to generate per fragment conformer combination",
interactive=True
)
with gr.Accordion(label='Advanced Options', open=False):
link_model = gr.Dropdown(
label='Select a Linker Generation Model',
choices=['DiffLinker'],
interactive=True,
)
linker_size_slider = gr.Slider(
minimum=0, maximum=20, step=1,
label="Linker Size",
info="0: automatically predicted; >=1: fixed size",
interactive=True
)
linker_steps_slider = gr.Slider(
minimum=100, maximum=500, step=10,
label="Number of Denoising Steps for Generating Linkers",
interactive=True
)
with gr.Row(equal_height=True):
email_input =gr.Textbox(
label='Email Address (Optional)',
info="Your email address will be used to notify you of the status of your job. "
"If you cannot receive the email, please check your spam/junk folder."
)
with gr.Column():
clr_btn = gr.ClearButton(
value='Reset Inputs',
components=[]
)
run_btn = gr.Button(value='Run GenFBDD', variant='primary')
with gr.Tab(label='Results', id='result'):
# Results
result_state = gr.State(value={})
result_table_orig_df = gr.State(value=pd.DataFrame())
result_table_mod_df = gr.State(value=pd.DataFrame())
result_protein_file = gr.File(visible=False, interactive=False)
with gr.Column(variant='panel'):
with gr.Row():
scores = gr.CheckboxGroup(list(fn.SCORE_MAP.keys()), label='Compound Scores')
filters = gr.CheckboxGroup(list(fn.FILTER_MAP.keys()), label='Compound Filters')
with gr.Row():
prop_clr_btn = gr.ClearButton(value='Clear Properties', interactive=False)
prop_calc_btn = gr.Button(value='Calculate Properties', interactive=False)
with gr.Row():
result_table_view = gr.HTML('<div id="result_view" class="fancy-table"></div>')
with gr.Column():
result_prot_view = gr.HTML('<div id="result_protein_view" class="mol-container"></div>')
result_file_btn = gr.Button(value='Create Result File', visible=False)
result_download_file = gr.File(label='Download Result File', visible=False)
with gr.Tab(label='Job Status', id='job'):
gr.Markdown('''
To check the status of an in-progress or historical job using the job ID and retrieve the predictions
if the job has completed. Note that predictions are only kept for 48 hours upon job completion.
You will be redirected to `Results` for carrying out further analysis and
generating the full report when the job is done. If the the query fails to respond, please wait for a
few minutes and refresh the page to try again.
''')
with gr.Row():
with gr.Column(scale=1):
loader_html = gr.HTML('<div class="loader first-frame"></div>', visible=False)
with gr.Column(scale=4):
pred_lookup_id = gr.Textbox(
label='Input Your Job ID', placeholder='e.g., e9dfd149-3f5c-48a6-b797-c27d027611ac',
info="Your job ID is a UUID4 string that you receive after submitting a job on the "
"page or in the email notification.")
pred_lookup_btn = gr.Button(value='Lookup the Job Status', variant='primary', visible=True)
pred_lookup_stop_btn = gr.Button(value='Stop Tracking', variant='stop', visible=False)
pred_lookup_status = gr.Markdown()
# Event handlers
## Home tab
### Fragment Library
frag_lib_dropdown.change(
fn=lambda lib: gr.File(FRAG_LIBS[lib], visible=True),
inputs=[frag_lib_dropdown],
outputs=[frag_lib_file],
)
frag_lib_upload_btn.upload(
fn=lambda file: gr.File(str(Path(file)), visible=True),
inputs=[frag_lib_upload_btn],
outputs=[frag_lib_file],
)
# Changing the file updates the original df, the modified df, and the view
frag_lib_file.change(
fn=read_fragment_library,
inputs=[frag_lib_file],
outputs=[frag_lib_orig_df],
).success(
fn=lambda df: [df, gr.DataFrame(df.drop(columns='mol'), visible=True)],
inputs=[frag_lib_orig_df],
outputs=[frag_lib_mod_df, frag_lib_view],
)
# Processing the fragment library updates the modified df
frag_lib_process_btn.click(
fn=lambda: gr.Info('Processing fragment library...'),
).then(
fn=lambda df, opts: [
new_df:=process_fragment_library(
df, **checkbox_group_selections_to_kwargs(opts, FRAG_LIB_PROCESS_OPTS)
),
gr.DataFrame(new_df.drop(columns='mol'), visible=True)
],
inputs=[frag_lib_orig_df, frag_lib_process_opts],
outputs=[frag_lib_mod_df, frag_lib_view],
)
def preprocess_protein_file(file):
filepath = Path(file.name)
if filepath.suffix == '.pdb':
return {
input_prot_file: gr.File(str(filepath), visible=True),
}
elif filepath.suffix == '.fasta':
seq = next(SeqIO.parse(file, 'fasta')).seq
filepath = fn.pdb_query(seq, method='FASTA Sequence')
return {
input_prot_file: gr.File(str(filepath), visible=True),
prot_query_input: seq,
prot_query_dropdown: 'FASTA Sequence',
}
### Protein Structure
# prot_upload_btn.upload(
# fn=lambda file: gr.File(str(Path(file)), visible=True),
# inputs=[prot_upload_btn],
# outputs=[prot_file],
# )
# prot_file.change(
# fn=lambda file: gr.HTML(fn.create_complex_view_html(file), visible=True),
# inputs=[prot_file],
# outputs=[input_prot_view],
# )
prot_upload_btn.upload(
fn=preprocess_protein_file,
inputs=[prot_upload_btn],
outputs=[input_prot_file, prot_query_dropdown, prot_query_input],
)
prot_query_btn.click(
fn=fn.pdb_query,
inputs=[prot_query_input, prot_query_dropdown],
outputs=[input_prot_file],
)
input_prot_file.change(
fn=lambda x, y: [gr.File(str(x), visible=True)],
inputs=[input_prot_file, input_prot_view],
outputs=[input_prot_file],
js=static.CREATE_MOL_VIEW,
)
#### Pocket Extraction
pocket_extract_dropdown.select(
fn=lambda method: gr.Button(visible=False) if POCKET_EXTRACT_OPTS[method] == 'clustering'
else gr.Button(visible=True),
inputs=[pocket_extract_dropdown],
outputs=[pocket_extract_btn],
)
# pocket_extract_btn.click(
# fn=lambda: gr.Info('Extracting pocket...'),
# ).then(
# fn=fn.extract_pockets_and_update_view,
# js=static.RETURN_LIGAND_SELECTION_JS,
# inputs=[prot_file, selected_ligand],
# outputs=[input_prot_view, pocket_path_dict, selected_ligand, selected_pocket],
# )
pocket_extract_btn.click(
fn=lambda: gr.Info('Extracting pocket...')
).success(
fn=lambda x, y: [x, y],
js=static.RETURN_SELECTION,
inputs=[selected_ligand, selected_pocket],
outputs=[selected_ligand, selected_pocket],
).then(
fn=lambda prot, lig: [list(extract_pockets(prot, lig).values()), '', ''],
inputs=[input_prot_file, selected_ligand],
outputs=[pocket_files, selected_ligand, selected_pocket],
).success(
fn=lambda x, y: gr.Info('Pocket extraction completed.'),
js=static.UPDATE_PROT_VIEW,
inputs=[pocket_files, input_prot_view],
)
### Dock-Link Pipeline
job_valid = run_btn.click(
fn=lambda x, y: [x, y],
js=static.RETURN_SELECTION,
inputs=[selected_ligand, selected_pocket],
outputs=[selected_ligand, selected_pocket],
).success(
fn=job_validate,
inputs=[
frag_lib_file, frag_lib_mod_df, input_prot_file,
selected_pocket, pocket_extract_dropdown, pocket_files,
email_input, run_state
],
outputs=[run_state],
)
job_valid.success(
fn=dock_link,
inputs=[
frag_lib_mod_df, input_prot_file,
dock_steps, n_confs_per_frag, dock_confidence_cutoff,
frag_dist_range_slider, frag_conf_combo_strategy,n_mols_per_combo_slider,
linker_size_slider, linker_steps_slider,
run_state
],
outputs=[result_state, run_state],
concurrency_limit=1, concurrency_id="gpu_queue"
)
### Job Status
user_job_lookup = pred_lookup_btn.click(
lambda: '<div class="loader"></ div>',
outputs=loader_html,
).success(
fn=query_job_status,
inputs=[pred_lookup_id],
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, result_state],
show_progress='minimal',
).success(
lambda: '<div class="loader first-frame"></ div>',
outputs=loader_html,
)
auto_job_lookup =job_valid.success(
fn=lambda job: [job['id'], gr.Tabs(selected='job')],
inputs=[run_state],
outputs=[pred_lookup_id, tabs],
).success(
lambda: '<div class="loader"></ div>',
outputs=loader_html,
).success(
fn=query_job_status,
inputs=pred_lookup_id,
outputs=[pred_lookup_status, pred_lookup_btn, pred_lookup_stop_btn, tabs, result_state],
show_progress='minimal',
cancels=[user_job_lookup],
).success(
lambda: '<div class="loader first-frame"></ div>',
outputs=loader_html,
)
pred_lookup_stop_btn.click(
fn=lambda: [gr.Button(visible=True), gr.Button(visible=False)],
outputs=[pred_lookup_btn, pred_lookup_stop_btn],
cancels=[user_job_lookup, auto_job_lookup],
concurrency_limit=None,
).success(
lambda: '<div class="loader first-frame"></ div>',
outputs=loader_html,
)
### Results
def update_results(result_info):
result_dir = Path(result_info['output_dir'])
result_type = result_info['type']
protein_structure_file = Path(result_info['protein_structure_file'])
if result_type == 'docking':
result_df = pd.read_csv(result_dir / 'docking_summary.csv')
result_df['Compound'] = result_df['X1'].apply(Chem.MolFromSmiles)
elif result_type == 'linking':
result_df = pd.read_csv(result_dir / 'linking_summary.csv')
result_df = result_df[~result_df['X1^'].str.contains('.', regex=False)]
result_df['Compound'] = result_df['X1^'].apply(Chem.MolFromSmiles)
result_df.dropna(subset=['Compound'], inplace=True)
else:
raise gr.Error('Invalid result type')
return {
result_table_orig_df: result_df,
result_table_mod_df: result_df.copy(deep=True),
result_protein_file: str(protein_structure_file),
}
def update_table(orig_df, score_list, filter_list, progress=gr.Progress(track_tqdm=True)):
mod_df = orig_df.copy()
try:
for filter_name in filter_list:
mod_df[filter_name] = mod_df['Compound'].parallel_apply(
lambda x: fn.FILTER_MAP[filter_name](x) if not pd.isna(x) else x)
for score_name in score_list:
mod_df[score_name] = mod_df['Compound'].parallel_apply(
lambda x: fn.SCORE_MAP[score_name](x) if not pd.isna(x) else x)
return {result_table_mod_df: mod_df}
except Exception as e:
gr.Warning(f'Failed to calculate properties due to error: {str(e)}')
return None
result_state.change(
fn=update_results,
inputs=[result_state],
outputs=[result_table_orig_df, result_table_mod_df, result_protein_file],
)
result_protein_file.change(
fn=lambda x, y: str(x),
js=static.CREATE_MOL_VIEW,
inputs=[result_protein_file, result_prot_view],
outputs=[result_protein_file],
)
result_table_mod_df.change(
fn=fn.create_result_table_html,
inputs=[result_table_mod_df],
outputs=[result_table_view]
).success(
fn=lambda x: gr.Button(visible=True),
inputs=[result_file_btn],
outputs=[result_file_btn],
)
prop_calc_btn.click(
fn=update_table,
inputs=[result_table_orig_df, scores, filters],
outputs=[result_table_mod_df],
show_progress='full',
)
prop_clr_btn.click(
fn=lambda orig_df: [orig_df, [], [], gr.Button(visible=False), gr.File(visible=False)],
inputs=[result_table_orig_df],
outputs=[result_table_mod_df, scores, filters, result_file_btn, result_download_file],
show_progress='full',
)
def generate_result_zip(result_info, compound_mod_df, protein_file):
folder_path = Path(result_info['output_dir'])
zip_path = folder_path.with_suffix('.zip')
compound_mod_df.to_csv(folder_path / f'{result_info["type"]}_summary.csv', index=False)
with zipfile.ZipFile(zip_path, 'w') as zip_file:
for file in folder_path.iterdir():
zip_file.write(file, arcname=file.name)
# Copy protein structure file to zip
zip_file.write(Path(protein_file), arcname=Path(protein_file).name)
return gr.File(str(zip_path), visible=True)
result_file_btn.click(
fn=generate_result_zip,
inputs=[result_state, result_table_mod_df, result_protein_file],
outputs=[result_download_file],
)
demo.load(fn=get_session_state, inputs=None, outputs=session_state, js=static.SETUP_JS)
demo.launch(
server_name='0.0.0.0',
max_file_size="5mb",
ssr_mode=False
)
|