Spaces:
Sleeping
Sleeping
File size: 29,343 Bytes
c17cba8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
import os
import pickle
from multiprocessing import Pool
import random
import copy
from torch_geometric.data import Batch
import numpy as np
import torch
from prody import confProDy
from rdkit import Chem
from rdkit.Chem import RemoveHs
from torch_geometric.data import Dataset, HeteroData
from torch_geometric.utils import subgraph
from tqdm import tqdm
confProDy(verbosity='none')
from datasets.process_mols import get_lig_graph_with_matching, moad_extract_receptor_structure
from utils.utils import read_strings_from_txt
class MOAD(Dataset):
def __init__(self, root, transform=None, cache_path='data/cache', split='train', limit_complexes=0, chain_cutoff=None,
receptor_radius=30, num_workers=1, c_alpha_max_neighbors=None, popsize=15, maxiter=15,
matching=True, keep_original=False, max_lig_size=None, remove_hs=False, num_conformers=1, all_atoms=False,
atom_radius=5, atom_max_neighbors=None, esm_embeddings_path=None, esm_embeddings_sequences_path=None, require_ligand=False,
include_miscellaneous_atoms=False, keep_local_structures=False,
min_ligand_size=0, knn_only_graph=False, matching_tries=1, multiplicity=1,
max_receptor_size=None, remove_promiscuous_targets=None, unroll_clusters=False, remove_pdbbind=False,
enforce_timesplit=False, no_randomness=False, single_cluster_name=None, total_dataset_size=None, skip_matching=False):
super(MOAD, self).__init__(root, transform)
self.moad_dir = root
self.include_miscellaneous_atoms = include_miscellaneous_atoms
self.max_lig_size = max_lig_size
self.split = split
self.limit_complexes = limit_complexes
self.receptor_radius = receptor_radius
self.num_workers = num_workers
self.c_alpha_max_neighbors = c_alpha_max_neighbors
self.remove_hs = remove_hs
self.require_ligand = require_ligand
self.esm_embeddings_path = esm_embeddings_path
self.esm_embeddings_sequences_path = esm_embeddings_sequences_path
self.keep_local_structures = keep_local_structures
self.knn_only_graph = knn_only_graph
self.matching_tries = matching_tries
self.all_atoms = all_atoms
self.multiplicity = multiplicity
self.chain_cutoff = chain_cutoff
self.no_randomness = no_randomness
self.total_dataset_size = total_dataset_size
self.skip_matching = skip_matching
self.prot_cache_path = os.path.join(cache_path, f'MOAD12_limit{self.limit_complexes}_INDEX{self.split}'
f'_recRad{self.receptor_radius}_recMax{self.c_alpha_max_neighbors}'
+ (''if not all_atoms else f'_atomRad{atom_radius}_atomMax{atom_max_neighbors}')
+ ('' if self.esm_embeddings_path is None else f'_esmEmbeddings')
+ ('' if not self.include_miscellaneous_atoms else '_miscAtoms')
+ ('' if not self.knn_only_graph else '_knnOnly'))
self.lig_cache_path = os.path.join(cache_path, f'MOAD12_limit{self.limit_complexes}_INDEX{self.split}'
f'_maxLigSize{self.max_lig_size}_H{int(not self.remove_hs)}'
+ ('' if not matching else f'_matching')
+ ('' if not skip_matching else f'skip')
+ (''if not matching or num_conformers == 1 else f'_confs{num_conformers}')
+ ('' if not keep_local_structures else f'_keptLocalStruct')
+ ('' if self.matching_tries == 1 else f'_tries{matching_tries}'))
self.popsize, self.maxiter = popsize, maxiter
self.matching, self.keep_original = matching, keep_original
self.num_conformers = num_conformers
self.single_cluster_name = single_cluster_name
if split == 'train':
split = 'PDBBind'
with open("./data/splits/MOAD_generalisation_splits.pkl", "rb") as f:
self.split_clusters = pickle.load(f)[split]
clustes_path = os.path.join(self.moad_dir, "new_cluster_to_ligands.pkl")
with open(clustes_path, "rb") as f:
self.cluster_to_ligands = pickle.load(f)
#self.cluster_to_ligands = {k: [s.split('.')[0] for s in v] for k, v in self.cluster_to_ligands.items()}
self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
if not self.check_all_receptors():
os.makedirs(self.prot_cache_path, exist_ok=True)
self.preprocessing_receptors()
self.atom_radius, self.atom_max_neighbors = atom_radius, atom_max_neighbors
if not os.path.exists(os.path.join(self.lig_cache_path, "ligands.pkl")):
os.makedirs(self.lig_cache_path, exist_ok=True)
self.preprocessing_ligands()
print('loading ligands from memory: ', os.path.join(self.lig_cache_path, "ligands.pkl"))
with open(os.path.join(self.lig_cache_path, "ligands.pkl"), 'rb') as f:
self.ligands = pickle.load(f)
if require_ligand:
with open(os.path.join(self.lig_cache_path, "rdkit_ligands.pkl"), 'rb') as f:
self.rdkit_ligands = pickle.load(f)
self.rdkit_ligands = {lig.name:mol for mol, lig in zip(self.rdkit_ligands, self.ligands)}
len_before = len(self.ligands)
if not self.single_cluster_name is None:
self.ligands = [lig for lig in self.ligands if lig.name in self.cluster_to_ligands[self.single_cluster_name]]
print('Kept', len(self.ligands), f'ligands in {self.single_cluster_name} out of', len_before)
len_before = len(self.ligands)
self.ligands = {lig.name: lig for lig in self.ligands if min_ligand_size == 0 or lig['ligand'].x.shape[0] >= min_ligand_size}
print('removed', len_before - len(self.ligands), 'ligands below minimum size out of', len_before)
receptors_names = set([lig.name[:6] for lig in self.ligands.values()])
self.collect_receptors(receptors_names, max_receptor_size, remove_promiscuous_targets)
# filter ligands for which the receptor failed
tot_before = len(self.ligands)
self.ligands = {k:v for k, v in self.ligands.items() if k[:6] in self.receptors}
print('removed', tot_before - len(self.ligands), 'ligands with no receptor out of', tot_before)
if remove_pdbbind:
complexes_pdbbind = read_strings_from_txt('data/splits/timesplit_no_lig_overlap_train') + read_strings_from_txt('data/splits/timesplit_no_lig_overlap_val')
with open('data/BindingMOAD_2020_ab_processed_biounit/ecod_t_group_binding_site_assignment_dict_major_domain.pkl', 'rb') as f:
pdbbind_to_cluster = pickle.load(f)
clusters_pdbbind = set([pdbbind_to_cluster[c] for c in complexes_pdbbind])
self.split_clusters = [c for c in self.split_clusters if c not in clusters_pdbbind]
self.cluster_to_ligands = {k: v for k, v in self.cluster_to_ligands.items() if k not in clusters_pdbbind}
ligand_accepted = []
for c, ligands in self.cluster_to_ligands.items():
ligand_accepted += ligands
ligand_accepted = set(ligand_accepted)
tot_before = len(self.ligands)
self.ligands = {k: v for k, v in self.ligands.items() if k in ligand_accepted}
print('removed', tot_before - len(self.ligands), 'ligands in overlap with PDBBind out of', tot_before)
if enforce_timesplit:
with open("data/splits/pdbids_2019", "r") as f:
lines = f.readlines()
pdbids_from2019 = []
for i in range(6, len(lines), 4):
pdbids_from2019.append(lines[i][18:22])
pdbids_from2019 = set(pdbids_from2019)
len_before = len(self.ligands)
self.ligands = {k: v for k, v in self.ligands.items() if k[:4].upper() not in pdbids_from2019}
print('removed', len_before - len(self.ligands), 'ligands from 2019 out of', len_before)
if unroll_clusters:
rec_keys = set([k[:6] for k in self.ligands.keys()])
self.cluster_to_ligands = {k:[k2 for k2 in self.ligands.keys() if k2[:6] == k] for k in rec_keys}
self.split_clusters = list(rec_keys)
else:
for c in self.cluster_to_ligands.keys():
self.cluster_to_ligands[c] = [v for v in self.cluster_to_ligands[c] if v in self.ligands]
self.split_clusters = [c for c in self.split_clusters if len(self.cluster_to_ligands[c])>0]
print_statistics(self)
list_names = [name for cluster in self.split_clusters for name in self.cluster_to_ligands[cluster]]
with open(os.path.join(self.prot_cache_path, f'moad_{self.split}_names.txt'), 'w') as f:
f.write('\n'.join(list_names))
def len(self):
return len(self.split_clusters) * self.multiplicity if self.total_dataset_size is None else self.total_dataset_size
def get_by_name(self, ligand_name, cluster):
ligand_graph = copy.deepcopy(self.ligands[ligand_name])
complex_graph = copy.deepcopy(self.receptors[ligand_name[:6]])
if False and self.keep_original and hasattr(ligand_graph['ligand'], 'orig_pos'):
lig_path = os.path.join(self.moad_dir, 'pdb_superligand', ligand_name + '.pdb')
lig = Chem.MolFromPDBFile(lig_path)
formula = np.asarray([atom.GetSymbol() for atom in lig.GetAtoms()])
# check for same receptor/ligand pair with a different binding position
for ligand_comp in self.cluster_to_ligands[cluster]:
if ligand_comp == ligand_name or ligand_comp[:6] != ligand_name[:6]:
continue
lig_path_comp = os.path.join(self.moad_dir, 'pdb_superligand', ligand_comp + '.pdb')
if not os.path.exists(lig_path_comp):
continue
lig_comp = Chem.MolFromPDBFile(lig_path_comp)
formula_comp = np.asarray([atom.GetSymbol() for atom in lig_comp.GetAtoms()])
if formula.shape == formula_comp.shape and np.all(formula == formula_comp) and hasattr(
self.ligands[ligand_comp], 'orig_pos'):
print(f'Found complex {ligand_comp} to have the same complex/ligand pair, adding it into orig_pos')
# add the orig_pos of the binding position
if not isinstance(ligand_graph['ligand'].orig_pos, list):
ligand_graph['ligand'].orig_pos = [ligand_graph['ligand'].orig_pos]
ligand_graph['ligand'].orig_pos.append(self.ligands[ligand_comp].orig_pos)
for type in ligand_graph.node_types + ligand_graph.edge_types:
for key, value in ligand_graph[type].items():
complex_graph[type][key] = value
complex_graph.name = ligand_graph.name
if isinstance(complex_graph['ligand'].pos, list):
for i in range(len(complex_graph['ligand'].pos)):
complex_graph['ligand'].pos[i] -= complex_graph.original_center
else:
complex_graph['ligand'].pos -= complex_graph.original_center
if self.require_ligand:
complex_graph.mol = copy.deepcopy(self.rdkit_ligands[ligand_name])
if self.chain_cutoff:
distances = torch.norm(
(torch.from_numpy(complex_graph['ligand'].orig_pos[0]) - complex_graph.original_center).unsqueeze(1) - complex_graph['receptor'].pos.unsqueeze(0), dim=2)
distances = distances.min(dim=0)[0]
if torch.min(distances) >= self.chain_cutoff:
print('minimum distance', torch.min(distances), 'too large', ligand_name,
'skipping and returning random. Number of chains',
torch.max(complex_graph['receptor'].chain_ids) + 1)
return self.get(random.randint(0, self.len()))
within_cutoff = distances < self.chain_cutoff
chains_within_cutoff = torch.zeros(torch.max(complex_graph['receptor'].chain_ids) + 1)
chains_within_cutoff.index_add_(0, complex_graph['receptor'].chain_ids, within_cutoff.float())
chains_within_cutoff_bool = chains_within_cutoff > 0
residues_to_keep = chains_within_cutoff_bool[complex_graph['receptor'].chain_ids]
if self.all_atoms:
atom_to_res_mapping = complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index[1]
atoms_to_keep = residues_to_keep[atom_to_res_mapping]
rec_remapper = (torch.cumsum(residues_to_keep.long(), dim=0) - 1)
atom_to_res_new_mapping = rec_remapper[atom_to_res_mapping][atoms_to_keep]
atom_res_edge_index = torch.stack([torch.arange(len(atom_to_res_new_mapping)), atom_to_res_new_mapping])
complex_graph['atom'].x = complex_graph['atom'].x[atoms_to_keep]
complex_graph['atom'].pos = complex_graph['atom'].pos[atoms_to_keep]
complex_graph['atom', 'atom_contact', 'atom'].edge_index = \
subgraph(atoms_to_keep, complex_graph['atom', 'atom_contact', 'atom'].edge_index,
relabel_nodes=True)[0]
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
complex_graph['receptor'].pos = complex_graph['receptor'].pos[residues_to_keep]
complex_graph['receptor'].x = complex_graph['receptor'].x[residues_to_keep]
complex_graph['receptor'].side_chain_vecs = complex_graph['receptor'].side_chain_vecs[residues_to_keep]
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = \
subgraph(residues_to_keep, complex_graph['receptor', 'rec_contact', 'receptor'].edge_index,
relabel_nodes=True)[0]
extra_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
complex_graph['receptor'].pos -= extra_center
if isinstance(complex_graph['ligand'].pos, list):
for i in range(len(complex_graph['ligand'].pos)):
complex_graph['ligand'].pos[i] -= extra_center
else:
complex_graph['ligand'].pos -= extra_center
complex_graph.original_center += extra_center
complex_graph['receptor'].pop('chain_ids')
for a in ['random_coords', 'coords', 'seq', 'sequence', 'mask', 'rmsd_matching', 'cluster', 'orig_seq',
'to_keep', 'chain_ids']:
if hasattr(complex_graph, a):
delattr(complex_graph, a)
if hasattr(complex_graph['receptor'], a):
delattr(complex_graph['receptor'], a)
return complex_graph
def get(self, idx):
if self.total_dataset_size is not None:
idx = random.randint(0, len(self.split_clusters) - 1)
idx = idx % len(self.split_clusters)
cluster = self.split_clusters[idx]
if self.no_randomness:
ligand_name = sorted(self.cluster_to_ligands[cluster])[0]
else:
ligand_name = random.choice(self.cluster_to_ligands[cluster])
complex_graph = self.get_by_name(ligand_name, cluster)
if self.total_dataset_size is not None:
complex_graph = Batch.from_data_list([complex_graph])
return complex_graph
def get_all_complexes(self):
complexes = {}
for cluster in self.split_clusters:
for ligand_name in self.cluster_to_ligands[cluster]:
complexes[ligand_name] = self.get_by_name(ligand_name, cluster)
return complexes
def preprocessing_receptors(self):
print(f'Processing receptors from [{self.split}] and saving it to [{self.prot_cache_path}]')
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = sorted(list(dict.fromkeys(receptor_names_all)))
print(f'Loading {len(receptor_names_all)} receptors.')
if self.esm_embeddings_path is not None:
id_to_embeddings = torch.load(self.esm_embeddings_path)
sequences_list = read_strings_from_txt(self.esm_embeddings_sequences_path)
sequences_to_embeddings = {}
for i, seq in enumerate(sequences_list):
sequences_to_embeddings[seq] = id_to_embeddings[str(i)]
else:
sequences_to_embeddings = None
# running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
list_indices = list(range(len(receptor_names_all)//1000+1))
random.shuffle(list_indices)
for i in list_indices:
if os.path.exists(os.path.join(self.prot_cache_path, f"receptors{i}.pkl")):
continue
receptor_names = receptor_names_all[1000*i:1000*(i+1)]
receptor_graphs = []
if self.num_workers > 1:
p = Pool(self.num_workers, maxtasksperchild=1)
p.__enter__()
with tqdm(total=len(receptor_names), desc=f'loading receptors {i}/{len(receptor_names_all)//1000+1}') as pbar:
map_fn = p.imap_unordered if self.num_workers > 1 else map
for t in map_fn(self.get_receptor, zip(receptor_names, [sequences_to_embeddings]*len(receptor_names))):
if t is not None:
print(len(receptor_graphs))
receptor_graphs.append(t)
pbar.update()
if self.num_workers > 1: p.__exit__(None, None, None)
print('Number of receptors: ', len(receptor_graphs))
with open(os.path.join(self.prot_cache_path, f"receptors{i}.pkl"), 'wb') as f:
pickle.dump((receptor_graphs), f)
return receptor_names_all
def check_all_receptors(self):
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = list(dict.fromkeys(receptor_names_all))
for i in range(len(receptor_names_all)//1000+1):
if not os.path.exists(os.path.join(self.prot_cache_path, f"receptors{i}.pkl")):
return False
return True
def collect_receptors(self, receptors_to_keep=None, max_receptor_size=None, remove_promiscuous_targets=None):
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
receptor_names_all = [l[:6] for l in complex_names_all]
receptor_names_all = sorted(list(dict.fromkeys(receptor_names_all)))
receptor_graphs_all = []
total_recovered = 0
print(f'Loading {len(receptor_names_all)} receptors to keep {len(receptors_to_keep)}.')
for i in range(len(receptor_names_all)//1000+1):
print(f'prot path: {os.path.join(self.prot_cache_path, f"receptors{i}.pkl")}')
with open(os.path.join(self.prot_cache_path, f"receptors{i}.pkl"), 'rb') as f:
l = pickle.load(f)
total_recovered += len(l)
if receptors_to_keep is not None:
l = [t for t in l if t['receptor_name'] in receptors_to_keep]
receptor_graphs_all.extend(l)
cur_len = len(receptor_graphs_all)
print(f"Kept {len(receptor_graphs_all)} receptors out of {len(receptor_names_all)} total and recovered {total_recovered}")
if max_receptor_size is not None:
receptor_graphs_all = [rec for rec in receptor_graphs_all if rec["receptor"].pos.shape[0] <= max_receptor_size]
print(f"Kept {len(receptor_graphs_all)} receptors out of {cur_len} after filtering by size")
cur_len = len(receptor_graphs_all)
if remove_promiscuous_targets is not None:
promiscuous_targets = set()
for name in complex_names_all:
l = name.split('_')
if int(l[3]) > remove_promiscuous_targets:
promiscuous_targets.add(name[:6])
receptor_graphs_all = [rec for rec in receptor_graphs_all if rec["receptor_name"] not in promiscuous_targets]
print(f"Kept {len(receptor_graphs_all)} receptors out of {cur_len} after removing promiscuous targets")
self.receptors = {}
for r in receptor_graphs_all:
self.receptors[r['receptor_name']] = r
return
def get_receptor(self, par):
name, sequences_to_embeddings = par
rec_path = os.path.join(self.moad_dir, 'pdb_protein', name + '_protein.pdb')
if not os.path.exists(rec_path):
print("Receptor not found", name, rec_path)
return None
complex_graph = HeteroData()
complex_graph['receptor_name'] = name
try:
moad_extract_receptor_structure(path=rec_path, complex_graph=complex_graph, neighbor_cutoff=self.receptor_radius,
max_neighbors=self.c_alpha_max_neighbors, sequences_to_embeddings=sequences_to_embeddings,
knn_only_graph=self.knn_only_graph, all_atoms=self.all_atoms, atom_cutoff=self.atom_radius,
atom_max_neighbors=self.atom_max_neighbors)
except Exception as e:
print(f'Skipping {name} because of the error:')
print(e)
return None
protein_center = torch.mean(complex_graph['receptor'].pos, dim=0, keepdim=True)
complex_graph['receptor'].pos -= protein_center
if self.all_atoms:
complex_graph['atom'].pos -= protein_center
complex_graph.original_center = protein_center
return complex_graph
def preprocessing_ligands(self):
print(f'Processing complexes from [{self.split}] and saving it to [{self.lig_cache_path}]')
complex_names_all = sorted([l for c in self.split_clusters for l in self.cluster_to_ligands[c]])
if self.limit_complexes is not None and self.limit_complexes != 0:
complex_names_all = complex_names_all[:self.limit_complexes]
print(f'Loading {len(complex_names_all)} ligands.')
# running preprocessing in parallel on multiple workers and saving the progress every 1000 complexes
list_indices = list(range(len(complex_names_all)//1000+1))
random.shuffle(list_indices)
for i in list_indices:
if os.path.exists(os.path.join(self.lig_cache_path, f"ligands{i}.pkl")):
continue
complex_names = complex_names_all[1000*i:1000*(i+1)]
ligand_graphs, rdkit_ligands = [], []
if self.num_workers > 1:
p = Pool(self.num_workers, maxtasksperchild=1)
p.__enter__()
with tqdm(total=len(complex_names), desc=f'loading complexes {i}/{len(complex_names_all)//1000+1}') as pbar:
map_fn = p.imap_unordered if self.num_workers > 1 else map
for t in map_fn(self.get_ligand, complex_names):
if t is not None:
ligand_graphs.append(t[0])
rdkit_ligands.append(t[1])
pbar.update()
if self.num_workers > 1: p.__exit__(None, None, None)
with open(os.path.join(self.lig_cache_path, f"ligands{i}.pkl"), 'wb') as f:
pickle.dump((ligand_graphs), f)
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands{i}.pkl"), 'wb') as f:
pickle.dump((rdkit_ligands), f)
ligand_graphs_all = []
for i in range(len(complex_names_all)//1000+1):
with open(os.path.join(self.lig_cache_path, f"ligands{i}.pkl"), 'rb') as f:
l = pickle.load(f)
ligand_graphs_all.extend(l)
with open(os.path.join(self.lig_cache_path, f"ligands.pkl"), 'wb') as f:
pickle.dump((ligand_graphs_all), f)
rdkit_ligands_all = []
for i in range(len(complex_names_all) // 1000 + 1):
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands{i}.pkl"), 'rb') as f:
l = pickle.load(f)
rdkit_ligands_all.extend(l)
with open(os.path.join(self.lig_cache_path, f"rdkit_ligands.pkl"), 'wb') as f:
pickle.dump((rdkit_ligands_all), f)
def get_ligand(self, name):
if self.split == 'train':
lig_path = os.path.join(self.moad_dir, 'pdb_superligand', name + '.pdb')
else:
lig_path = os.path.join(self.moad_dir, 'pdb_ligand', name + '.pdb')
if not os.path.exists(lig_path):
print("Ligand not found", name, lig_path)
return None
# read pickle
lig = Chem.MolFromPDBFile(lig_path)
if self.max_lig_size is not None and lig.GetNumHeavyAtoms() > self.max_lig_size:
print(f'Ligand with {lig.GetNumHeavyAtoms()} heavy atoms is larger than max_lig_size {self.max_lig_size}. Not including {name} in preprocessed data.')
return None
try:
if self.matching:
smile = Chem.MolToSmiles(lig)
if '.' in smile:
print(f'Ligand {name} has multiple fragments and we are doing matching. Not including {name} in preprocessed data.')
return None
complex_graph = HeteroData()
complex_graph['name'] = name
Chem.SanitizeMol(lig)
get_lig_graph_with_matching(lig, complex_graph, self.popsize, self.maxiter, self.matching, self.keep_original,
self.num_conformers, remove_hs=self.remove_hs, tries=self.matching_tries, skip_matching=self.skip_matching)
except Exception as e:
print(f'Skipping {name} because of the error:')
print(e)
return None
if self.split != 'train':
other_positions = [complex_graph['ligand'].orig_pos]
nsplit = name.split('_')
for i in range(100):
new_file = os.path.join(self.moad_dir, 'pdb_ligand', f'{nsplit[0]}_{nsplit[1]}_{nsplit[2]}_{i}.pdb')
if os.path.exists(new_file):
if i != int(nsplit[3]):
lig = Chem.MolFromPDBFile(new_file)
lig = RemoveHs(lig, sanitize=True)
other_positions.append(lig.GetConformer().GetPositions())
else:
break
complex_graph['ligand'].orig_pos = np.asarray(other_positions)
return complex_graph, lig
def print_statistics(dataset):
statistics = ([], [], [], [], [], [])
receptor_sizes = []
for i in range(len(dataset)):
complex_graph = dataset[i]
lig_pos = complex_graph['ligand'].pos if torch.is_tensor(complex_graph['ligand'].pos) else complex_graph['ligand'].pos[0]
receptor_sizes.append(complex_graph['receptor'].pos.shape[0])
radius_protein = torch.max(torch.linalg.vector_norm(complex_graph['receptor'].pos, dim=1))
molecule_center = torch.mean(lig_pos, dim=0)
radius_molecule = torch.max(
torch.linalg.vector_norm(lig_pos - molecule_center.unsqueeze(0), dim=1))
distance_center = torch.linalg.vector_norm(molecule_center)
statistics[0].append(radius_protein)
statistics[1].append(radius_molecule)
statistics[2].append(distance_center)
if "rmsd_matching" in complex_graph:
statistics[3].append(complex_graph.rmsd_matching)
else:
statistics[3].append(0)
statistics[4].append(int(complex_graph.random_coords) if "random_coords" in complex_graph else -1)
if "random_coords" in complex_graph and complex_graph.random_coords and "rmsd_matching" in complex_graph:
statistics[5].append(complex_graph.rmsd_matching)
if len(statistics[5]) == 0:
statistics[5].append(-1)
name = ['radius protein', 'radius molecule', 'distance protein-mol', 'rmsd matching', 'random coordinates', 'random rmsd matching']
print('Number of complexes: ', len(dataset))
for i in range(len(name)):
array = np.asarray(statistics[i])
print(f"{name[i]}: mean {np.mean(array)}, std {np.std(array)}, max {np.max(array)}")
return
|