Spaces:
Sleeping
Sleeping
File size: 37,742 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import math
from e3nn import o3
import torch
from e3nn.o3 import Linear
from esm.pretrained import load_model_and_alphabet
from torch import nn
from torch.nn import functional as F
from torch_cluster import radius, radius_graph
from torch_scatter import scatter, scatter_mean
import numpy as np
from models.layers import GaussianSmearing, AtomEncoder
from models.tensor_layers import TensorProductConvLayer, get_irrep_seq
from utils import so3, torus
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims, rec_atom_feature_dims
class CGModel(torch.nn.Module):
def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2,
ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250,
center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False,
scale_by_sigma=True, norm_by_sigma=True, use_second_order_repr=False, batch_norm=True,
dynamic_max_cross=False, dropout=0.0, smooth_edges=False, odd_parity=False,
separate_noise_schedule=False, lm_embedding_type=None, confidence_mode=False,
confidence_dropout=0, confidence_no_batchnorm=False,
asyncronous_noise_schedule=False, affinity_prediction=False, parallel=1,
parallel_aggregators="mean max min std", num_confidence_outputs=1, atom_num_confidence_outputs=1, fixed_center_conv=False,
no_aminoacid_identities=False, include_miscellaneous_atoms=False,
differentiate_convolutions=True, tp_weights_layers=2, num_prot_emb_layers=0, reduce_pseudoscalars=False,
embed_also_ligand=False, atom_confidence=False, sidechain_pred=False, depthwise_convolution=False):
super(CGModel, self).__init__()
assert parallel == 1, "not implemented"
assert (not no_aminoacid_identities) or (lm_embedding_type is None), "no language model emb without identities"
self.t_to_sigma = t_to_sigma
self.in_lig_edge_features = in_lig_edge_features
sigma_embed_dim *= (3 if separate_noise_schedule else 1)
self.sigma_embed_dim = sigma_embed_dim
self.lig_max_radius = lig_max_radius
self.rec_max_radius = rec_max_radius
self.include_miscellaneous_atoms = include_miscellaneous_atoms
self.cross_max_distance = cross_max_distance
self.dynamic_max_cross = dynamic_max_cross
self.center_max_distance = center_max_distance
self.distance_embed_dim = distance_embed_dim
self.cross_distance_embed_dim = cross_distance_embed_dim
self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
self.ns, self.nv = ns, nv
self.scale_by_sigma = scale_by_sigma
self.norm_by_sigma = norm_by_sigma
self.device = device
self.no_torsion = no_torsion
self.smooth_edges = smooth_edges
self.odd_parity = odd_parity
self.timestep_emb_func = timestep_emb_func
self.separate_noise_schedule = separate_noise_schedule
self.confidence_mode = confidence_mode
self.num_conv_layers = num_conv_layers
self.num_prot_emb_layers = num_prot_emb_layers
self.asyncronous_noise_schedule = asyncronous_noise_schedule
self.affinity_prediction = affinity_prediction
self.fixed_center_conv = fixed_center_conv
self.no_aminoacid_identities = no_aminoacid_identities
self.differentiate_convolutions = differentiate_convolutions
self.reduce_pseudoscalars = reduce_pseudoscalars
self.atom_confidence = atom_confidence
self.atom_num_confidence_outputs = atom_num_confidence_outputs
self.sidechain_pred = sidechain_pred
self.lm_embedding_type = lm_embedding_type
if lm_embedding_type is None:
lm_embedding_dim = 0
elif lm_embedding_type == "precomputed":
lm_embedding_dim=1280
else:
lm, alphabet = load_model_and_alphabet(lm_embedding_type)
self.batch_converter = alphabet.get_batch_converter()
lm.lm_head = torch.nn.Identity()
lm.contact_head = torch.nn.Identity()
lm_embedding_dim = lm.embed_dim
self.lm = lm
atom_encoder_class = AtomEncoder
self.lig_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim)
self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(),nn.Dropout(dropout),nn.Linear(ns, ns))
self.rec_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=0, lm_embedding_dim=lm_embedding_dim)
self.rec_edge_embedding = nn.Sequential(nn.Linear(distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns))
self.rec_sigma_embedding = nn.Sequential(nn.Linear(sigma_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout), nn.Linear(ns, ns))
if self.include_miscellaneous_atoms:
self.misc_atom_node_embedding = atom_encoder_class(emb_dim=ns, feature_dims=rec_atom_feature_dims, sigma_embed_dim=sigma_embed_dim)
self.misc_atom_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.ar_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.la_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(),nn.Dropout(dropout), nn.Linear(ns, ns))
self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))
self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim)
self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim)
self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim)
irrep_seq = get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars)
assert not self.include_miscellaneous_atoms, "currently not supported"
rec_emb_layers = []
for i in range(num_prot_emb_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1,
depthwise=depthwise_convolution
)
rec_emb_layers.append(layer)
self.rec_emb_layers = nn.ModuleList(rec_emb_layers)
self.embed_also_ligand = embed_also_ligand
if embed_also_ligand:
lig_emb_layers = []
for i in range(num_prot_emb_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1,
depthwise=depthwise_convolution
)
lig_emb_layers.append(layer)
self.lig_emb_layers = nn.ModuleList(lig_emb_layers)
conv_layers = []
for i in range(num_prot_emb_layers, num_prot_emb_layers + num_conv_layers):
in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
layer = TensorProductConvLayer(
in_irreps=in_irreps,
sh_irreps=self.sh_irreps,
out_irreps=out_irreps,
n_edge_features=3 * ns,
hidden_features=3 * ns,
residual=True,
batch_norm=batch_norm,
dropout=dropout,
faster=sh_lmax == 1 and not use_second_order_repr,
tp_weights_layers=tp_weights_layers,
edge_groups=1 if not differentiate_convolutions else (2 if i == num_prot_emb_layers + num_conv_layers - 1 else 4),
depthwise=depthwise_convolution
)
conv_layers.append(layer)
self.conv_layers = nn.ModuleList(conv_layers)
if sidechain_pred:
self.sidechain_predictor = Linear(
irreps_in=irrep_seq[min(num_prot_emb_layers + num_conv_layers, len(irrep_seq) - 1)],
irreps_out='4x0e + 2x1e + 4x0o + 2x1o',
internal_weights=True,
shared_weights=True,
)
if self.confidence_mode:
input_size = ns + (nv if reduce_pseudoscalars else ns) if num_conv_layers + num_prot_emb_layers >= 3 else ns
if self.atom_confidence:
self.atom_confidence_predictor = nn.Sequential(
nn.Linear(input_size, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, atom_num_confidence_outputs + ns)
)
input_size = ns
self.confidence_predictor = nn.Sequential(
nn.Linear(input_size, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, ns),
nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
nn.ReLU(),
nn.Dropout(confidence_dropout),
nn.Linear(ns, num_confidence_outputs + (1 if self.affinity_prediction else 0))
)
else:
# center of mass translation and rotation components
self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim)
self.center_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim + sigma_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_conv = TensorProductConvLayer(
in_irreps=self.conv_layers[-1].out_irreps,
sh_irreps=self.sh_irreps,
out_irreps=f'2x1o + 2x1e' if not self.odd_parity else '1x1o + 1x1e',
n_edge_features=2 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
if not no_torsion:
# torsion angles components
self.final_edge_embedding = nn.Sequential(
nn.Linear(distance_embed_dim, ns),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ns, ns)
)
self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e")
self.tor_bond_conv = TensorProductConvLayer(
in_irreps=self.conv_layers[-1].out_irreps,
sh_irreps=self.final_tp_tor.irreps_out,
out_irreps=f'{ns}x0o + {ns}x0e' if not self.odd_parity else f'{ns}x0o',
n_edge_features=3 * ns,
residual=False,
dropout=dropout,
batch_norm=batch_norm
)
self.tor_final_layer = nn.Sequential(
nn.Linear(2 * ns if not self.odd_parity else ns, ns, bias=False),
nn.Tanh(),
nn.Dropout(dropout),
nn.Linear(ns, 1, bias=False)
)
def ligand_embedding(self, data):
# ligand embedding
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.build_lig_conv_graph(data)
lig_node_attr = self.lig_node_embedding(lig_node_attr)
lig_edge_attr = self.lig_edge_embedding(lig_edge_attr)
assert self.embed_also_ligand, "otherwise reimplement padding"
for l in range(len(self.lig_emb_layers)):
edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_edge_index[0], :self.ns],
lig_node_attr[lig_edge_index[1], :self.ns]], -1)
lig_node_attr = self.lig_emb_layers[l](lig_node_attr, lig_edge_index, edge_attr_, lig_edge_sh,
edge_weight=lig_edge_weight)
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight
def embedding(self, data):
if not hasattr(data['receptor'], "rec_node_attr"):
if self.lm_embedding_type not in [None, 'precomputed']:
sequences = [s for l in data['receptor'].sequence for s in l]
if isinstance(sequences[0], list):
sequences = [s for l in sequences for s in l]
sequences = [(i, s) for i, s in enumerate(sequences)]
batch_labels, batch_strs, batch_tokens = self.batch_converter(sequences)
out = self.lm(batch_tokens.to(data['receptor'].x.device), repr_layers=[self.lm.num_layers], return_contacts=False)
rec_lm_emb = torch.cat([t[:len(sequences[i][1])] for i, t in enumerate(out['representations'][self.lm.num_layers])], dim=0)
data['receptor'].x = torch.cat([data['receptor'].x, rec_lm_emb], dim=-1)
rec_node_attr, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.build_rec_conv_graph(data)
rec_node_attr = self.rec_node_embedding(rec_node_attr)
rec_edge_attr = self.rec_edge_embedding(rec_edge_attr)
for l in range(len(self.rec_emb_layers)):
edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[data['receptor', 'receptor'].edge_index[0], :self.ns], rec_node_attr[data['receptor', 'receptor'].edge_index[1], :self.ns]], -1)
rec_node_attr = self.rec_emb_layers[l](rec_node_attr, data['receptor', 'receptor'].edge_index, edge_attr_, rec_edge_sh, edge_weight=rec_edge_weight)
data['receptor'].rec_node_attr = rec_node_attr
data['receptor', 'receptor'].rec_edge_attr = rec_edge_attr
data['receptor', 'receptor'].edge_sh = rec_edge_sh
data['receptor', 'receptor'].edge_weight = rec_edge_weight
# receptor embedding
rec_sigma_emb = self.rec_sigma_embedding(self.timestep_emb_func(data.complex_t['tr']))
rec_node_attr = data['receptor'].rec_node_attr + 0
rec_node_attr[:, :self.ns] = rec_node_attr[:, :self.ns] + rec_sigma_emb[data['receptor'].batch]
rec_edge_attr = data['receptor', 'receptor'].rec_edge_attr + rec_sigma_emb[data['receptor'].batch[data['receptor', 'receptor'].edge_index[0]]]
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data)
return lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, \
rec_node_attr, data['receptor', 'receptor'].edge_index, rec_edge_attr, data['receptor', 'receptor'].edge_sh, data['receptor', 'receptor'].edge_weight
def forward(self, data):
if self.no_aminoacid_identities:
data['receptor'].x = data['receptor'].x * 0
if not self.confidence_mode:
tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']])
else:
tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight, rec_node_attr, \
rec_edge_index, rec_edge_attr, rec_edge_sh, rec_edge_weight = self.embedding(data)
# build cross graph
if self.dynamic_max_cross:
cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1)
else:
cross_cutoff = self.cross_max_distance
lr_edge_index, lr_edge_attr, lr_edge_sh, rev_lr_edge_sh, lr_edge_weight = self.build_cross_conv_graph(data, cross_cutoff)
lr_edge_attr = self.cross_edge_embedding(lr_edge_attr)
node_attr = torch.cat([lig_node_attr, rec_node_attr], dim=0)
lr_edge_index[1] = lr_edge_index[1] + len(lig_node_attr)
edge_index = torch.cat([lig_edge_index, lr_edge_index, rec_edge_index + len(lig_node_attr),
torch.flip(lr_edge_index, dims=[0])], dim=1)
edge_attr = torch.cat([lig_edge_attr, lr_edge_attr, rec_edge_attr, lr_edge_attr], dim=0)
edge_sh = torch.cat([lig_edge_sh, lr_edge_sh, rec_edge_sh, rev_lr_edge_sh], dim=0)
edge_weight = torch.cat([lig_edge_weight, lr_edge_weight, rec_edge_weight, lr_edge_weight],
dim=0) if torch.is_tensor(lig_edge_weight) else torch.ones((len(edge_index[0]), 1),
device=edge_index.device)
s1, s2, s3 = len(lig_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]), len(lig_edge_index[0]) + len(lr_edge_index[0]) + len(rec_edge_index[0])
for l in range(len(self.conv_layers)):
if l < len(self.conv_layers) - 1:
edge_attr_ = torch.cat(
[edge_attr, node_attr[edge_index[0], :self.ns], node_attr[edge_index[1], :self.ns]], -1)
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2], edge_attr_[s2:s3], edge_attr_[s3:]]
node_attr = self.conv_layers[l](node_attr, edge_index, edge_attr_, edge_sh, edge_weight=edge_weight)
else:
edge_attr_ = torch.cat([edge_attr[:s2], node_attr[edge_index[0, :s2], :self.ns], node_attr[edge_index[1, :s2], :self.ns]], -1)
if self.differentiate_convolutions: edge_attr_ = [edge_attr_[:s1], edge_attr_[s1:s2]]
node_attr = self.conv_layers[l](node_attr, edge_index[:, :s2], edge_attr_, edge_sh[:s2], edge_weight=edge_weight[:s2])
lig_node_attr = node_attr[:len(lig_node_attr)]
# compute confidence score
if self.confidence_mode:
scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns], lig_node_attr[:,-(self.nv if self.reduce_pseudoscalars else self.ns):] ], dim=1) \
if self.num_conv_layers + self.num_prot_emb_layers >= 3 else lig_node_attr[:,:self.ns]
if self.atom_confidence:
scalar_lig_attr = self.atom_confidence_predictor(scalar_lig_attr)
atom_confidence = scalar_lig_attr[:, :self.atom_num_confidence_outputs]
scalar_lig_attr = scalar_lig_attr[:, self.atom_num_confidence_outputs:]
else:
atom_confidence = torch.zeros((len(lig_node_attr),), device=lig_node_attr.device)
confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1)
return confidence, atom_confidence
# compute translational and rotational score vectors
center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data)
center_edge_attr = self.center_edge_embedding(center_edge_attr)
if self.fixed_center_conv:
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[1], :self.ns]], -1)
else:
center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1)
global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs)
tr_pred = global_pred[:, :3] + (global_pred[:, 6:9] if not self.odd_parity else 0)
rot_pred = global_pred[:, 3:6] + (global_pred[:, 9:] if not self.odd_parity else 0)
if self.separate_noise_schedule:
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t'])
else: # tr rot and tor noise is all the same in this case
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])
# fix the magnitude of translational and rotational score vectors
tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1)
tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1))
rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1)
rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1))
if self.scale_by_sigma:
tr_pred = tr_pred / tr_sigma.unsqueeze(1)
rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device)
# predict sidechain orientation
sidechain_pred = None
if self.sidechain_pred:
rec_node_attr = node_attr[len(lig_node_attr):]
sidechain_pred = self.sidechain_predictor(rec_node_attr)
sidechain_pred = sidechain_pred[:, :10] + sidechain_pred[:, 10:] # sum even and odd components
if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device), sidechain_pred
# torsional components
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data)
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight)
tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]
if self.scale_by_sigma:
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
.to(data['ligand'].x.device))
return tr_pred, rot_pred, tor_pred, sidechain_pred
def torsional_forward(self, data):
tor_sigma = self.t_to_sigma(data.complex_t['tor'])
# build ligand graph
lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh, lig_edge_weight = self.ligand_embedding(data)
if self.separate_noise_schedule:
data.graph_sigma_emb = torch.cat([self.timestep_emb_func(data.complex_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['t'])
else: # tr rot and tor noise is all the same in this case
data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])
# torsional components
tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh, tor_edge_weight = self.build_bond_conv_graph(data)
tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]
tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])
tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
out_nodes=data['ligand'].edge_mask.sum(), reduce='mean', edge_weight=tor_edge_weight)
tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]
if self.scale_by_sigma:
tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
.to(data['ligand'].x.device))
return 0, 0, tor_pred, 0
def get_edge_weight(self, edge_vec, max_norm):
# computes weights for edges that are decreasing with the distance
# it has an effect only if smooth edges is true
if self.smooth_edges:
normalised_norm = torch.clip(edge_vec.norm(dim=-1) * np.pi / max_norm, max=np.pi)
return 0.5 * (torch.cos(normalised_norm) + 1.0).unsqueeze(-1)
return 1.0
def build_lig_conv_graph(self, data):
# builds the ligand graph edges and initial node and edge features
if self.separate_noise_schedule:
data['ligand'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['ligand'].node_t[noise_type]) for noise_type in ['tr','rot','tor']], dim=1)
elif self.asyncronous_noise_schedule:
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['t'])
else:
data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr']) # tr rot and tor noise is all the same
# compute edges
radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch)
edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long()
edge_attr = torch.cat([
data['ligand', 'ligand'].edge_attr,
torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device)
], 0)
# compute initial features
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1)
src, dst = edge_index
edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = torch.cat([edge_attr, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return node_attr, edge_index, edge_attr, edge_sh, edge_weight
def build_rec_conv_graph(self, data):
# builds the receptor initial node and edge embeddings
assert not self.separate_noise_schedule or self.asyncronous_noise_schedule, "removed support in this function"
node_attr = data['receptor'].x
# this assumes the edges were already created in preprocessing since protein's structure is fixed
edge_index = data['receptor', 'receptor'].edge_index
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()]
edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = edge_length_emb
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.rec_max_radius)
return node_attr, edge_attr, edge_sh, edge_weight
def build_misc_atom_conv_graph(self, data):
# build the graph between receptor misc_atoms
if self.separate_noise_schedule:
data['misc_atom'].node_sigma_emb = torch.cat([self.timestep_emb_func(data['misc_atom'].node_t[noise_type]) for noise_type in ['tr', 'rot', 'tor']],dim=1)
elif self.asyncronous_noise_schedule:
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['t'])
else:
data['misc_atom'].node_sigma_emb = self.timestep_emb_func(data['misc_atom'].node_t['tr']) # tr rot and tor noise is all the same
node_attr = torch.cat([data['misc_atom'].x, data['misc_atom'].node_sigma_emb], 1)
# this assumes the edges were already created in preprocessing since protein's structure is fixed
edge_index = data['misc_atom', 'misc_atom'].edge_index
src, dst = edge_index
edge_vec = data['misc_atom'].pos[dst.long()] - data['misc_atom'].pos[src.long()]
edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['misc_atom'].node_sigma_emb[edge_index[0].long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return node_attr, edge_index, edge_attr, edge_sh, edge_weight
def build_cross_conv_graph(self, data, cross_distance_cutoff):
# builds the cross edges between ligand and receptor
if torch.is_tensor(cross_distance_cutoff):
# different cutoff for every graph (depends on the diffusion time)
edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch],
data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
else:
edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
src, dst = edge_index
edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()]
edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()]
edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
rev_edge_sh = o3.spherical_harmonics(self.sh_irreps, -edge_vec, normalize=True, normalization='component')
cutoff_d = cross_distance_cutoff[data['ligand'].batch[src]].squeeze() if torch.is_tensor(cross_distance_cutoff) else cross_distance_cutoff
edge_weight = self.get_edge_weight(edge_vec, cutoff_d)
return edge_index, edge_attr, edge_sh, rev_edge_sh, edge_weight
def build_misc_cross_conv_graph(self, data, lr_cross_distance_cutoff):
# build the cross edges between ligan atoms, receptor residues and receptor atoms
# LIGAND to RECEPTOR
if torch.is_tensor(lr_cross_distance_cutoff):
# different cutoff for every graph
lr_edge_index = radius(data['receptor'].pos / lr_cross_distance_cutoff[data['receptor'].batch],
data['ligand'].pos / lr_cross_distance_cutoff[data['ligand'].batch], 1,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
else:
lr_edge_index = radius(data['receptor'].pos, data['ligand'].pos, lr_cross_distance_cutoff,
data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
lr_edge_vec = data['receptor'].pos[lr_edge_index[1].long()] - data['ligand'].pos[lr_edge_index[0].long()]
lr_edge_length_emb = self.cross_distance_expansion(lr_edge_vec.norm(dim=-1))
lr_edge_sigma_emb = data['ligand'].node_sigma_emb[lr_edge_index[0].long()]
lr_edge_attr = torch.cat([lr_edge_sigma_emb, lr_edge_length_emb], 1)
lr_edge_sh = o3.spherical_harmonics(self.sh_irreps, lr_edge_vec, normalize=True, normalization='component')
cutoff_d = lr_cross_distance_cutoff[data['ligand'].batch[lr_edge_index[0]]].squeeze() \
if torch.is_tensor(lr_cross_distance_cutoff) else lr_cross_distance_cutoff
lr_edge_weight = self.get_edge_weight(lr_edge_vec, cutoff_d)
# LIGAND to ATOM
la_edge_index = radius(data['misc_atom'].pos, data['ligand'].pos, self.lig_max_radius,
data['misc_atom'].batch, data['ligand'].batch, max_num_neighbors=10000)
la_edge_vec = data['misc_atom'].pos[la_edge_index[1].long()] - data['ligand'].pos[la_edge_index[0].long()]
la_edge_length_emb = self.cross_distance_expansion(la_edge_vec.norm(dim=-1))
la_edge_sigma_emb = data['ligand'].node_sigma_emb[la_edge_index[0].long()]
la_edge_attr = torch.cat([la_edge_sigma_emb, la_edge_length_emb], 1)
la_edge_sh = o3.spherical_harmonics(self.sh_irreps, la_edge_vec, normalize=True, normalization='component')
la_edge_weight = self.get_edge_weight(la_edge_vec, self.lig_max_radius)
# ATOM to RECEPTOR
ar_edge_index = data['misc_atom', 'receptor'].edge_index
ar_edge_vec = data['receptor'].pos[ar_edge_index[1].long()] - data['misc_atom'].pos[ar_edge_index[0].long()]
ar_edge_length_emb = self.rec_distance_expansion(ar_edge_vec.norm(dim=-1))
ar_edge_sigma_emb = data['misc_atom'].node_sigma_emb[ar_edge_index[0].long()]
ar_edge_attr = torch.cat([ar_edge_sigma_emb, ar_edge_length_emb], 1)
ar_edge_sh = o3.spherical_harmonics(self.sh_irreps, ar_edge_vec, normalize=True, normalization='component')
ar_edge_weight = 1
return lr_edge_index, lr_edge_attr, lr_edge_sh, lr_edge_weight, la_edge_index, la_edge_attr, \
la_edge_sh, la_edge_weight, ar_edge_index, ar_edge_attr, ar_edge_sh, ar_edge_weight
def build_center_conv_graph(self, data):
# builds the filter and edges for the convolution generating translational and rotational scores
edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0)
center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device)
center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos)
center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1)
edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]]
edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1))
edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()]
edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
return edge_index, edge_attr, edge_sh
def build_bond_conv_graph(self, data):
# builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes
bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long()
bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2
bond_batch = data['ligand'].batch[bonds[0]]
edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch)
edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]]
edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1))
edge_attr = self.final_edge_embedding(edge_attr)
edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
edge_weight = self.get_edge_weight(edge_vec, self.lig_max_radius)
return bonds, edge_index, edge_attr, edge_sh, edge_weight
|