Spaces:
Sleeping
Sleeping
File size: 24,075 Bytes
642d891 9439b9b c94f054 9439b9b 642d891 9439b9b b50669b 642d891 b50669b 9439b9b c94f054 9439b9b b4df2f2 9439b9b b4df2f2 9439b9b 642d891 c94f054 96e442f 642d891 c94f054 642d891 c94f054 9439b9b c94f054 9439b9b c94f054 9439b9b 642d891 9439b9b c94f054 9439b9b c94f054 9439b9b 642d891 9439b9b c94f054 642d891 9439b9b c94f054 9439b9b c94f054 9439b9b c94f054 9439b9b c94f054 9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 |
import urllib.parse
from datetime import datetime
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.utils import formatdate, make_msgid
from functools import cache
import html
import os
from pathlib import Path
import smtplib
import sys
import tempfile
import pandas as pd
from bokeh.models import NumberFormatter, BooleanFormatter, HTMLTemplateFormatter
import gradio as gr
import pytz
import panel as pn
import seaborn as sns
from markdown import markdown
from rdkit import Chem, RDConfig
from rdkit.Chem import Crippen, Descriptors, rdMolDescriptors, Lipinski, rdmolops, Draw, rdDepictor
import requests
from app import static
sys.path.append(str(Path(RDConfig.RDContribDir) / 'SA_Score'))
import sascorer
COL_ALIASES = {
'out_path': 'Pose',
'ligand_conf_path': 'Pose',
'ID1': 'Compound ID',
'ID2': 'Target ID',
'X1': 'Fragment SMILES',
'X1^': 'Compound SMILES',
'name': 'Complex Name',
}
COL_DTYPE = {
'out_path': 'str',
'ligand_conf_path': 'str',
'ID1': 'str',
'ID2': 'str',
'X1': 'str',
'X1^': 'str',
'name': 'str',
}
def lipinski(mol):
"""
Lipinski's rules:
Hydrogen bond donors <= 5
Hydrogen bond acceptors <= 10
Molecular weight <= 500 daltons
logP <= 5
"""
return (
Lipinski.NumHDonors(mol) <= 5 and
Lipinski.NumHAcceptors(mol) <= 10 and
Descriptors.MolWt(mol) <= 500 and
Crippen.MolLogP(mol) <= 5
)
def reos(mol):
"""
Rapid Elimination Of Swill filter:
Molecular weight between 200 and 500
LogP between -5.0 and +5.0
H-bond donor count between 0 and 5
H-bond acceptor count between 0 and 10
Formal charge between -2 and +2
Rotatable bond count between 0 and 8
Heavy atom count between 15 and 50
"""
return (
200 <= Descriptors.MolWt(mol) <= 500 and
-5.0 <= Crippen.MolLogP(mol) <= 5.0 and
0 <= Lipinski.NumHDonors(mol) <= 5 and
0 <= Lipinski.NumHAcceptors(mol) <= 10 and
-2 <= rdmolops.GetFormalCharge(mol) <= 2 and
0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and
15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50
)
def ghose(mol):
"""
Ghose drug like filter:
Molecular weight between 160 and 480
LogP between -0.4 and +5.6
Atom count between 20 and 70
Molar refractivity between 40 and 130
"""
return (
160 <= Descriptors.MolWt(mol) <= 480 and
-0.4 <= Crippen.MolLogP(mol) <= 5.6 and
20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and
40 <= Crippen.MolMR(mol) <= 130
)
def veber(mol):
"""
The Veber filter is a rule of thumb filter for orally active drugs described in
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
Rotatable bonds <= 10
Topological polar surface area <= 140
"""
return (
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and
rdMolDescriptors.CalcTPSA(mol) <= 140
)
def rule_of_three(mol):
"""
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
Molecular weight <= 300
LogP <= 3
H-bond donor <= 3
H-bond acceptor count <= 3
Rotatable bond count <= 3
"""
return (
Descriptors.MolWt(mol) <= 300 and
Crippen.MolLogP(mol) <= 3 and
Lipinski.NumHDonors(mol) <= 3 and
Lipinski.NumHAcceptors(mol) <= 3 and
rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3
)
@cache
def load_smarts_patterns(smarts_path):
# Load the CSV file containing SMARTS patterns
smarts_df = pd.read_csv(Path(smarts_path))
# Convert all SMARTS patterns to molecules
smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']]
return smarts_mols
def smarts_filter(mol, smarts_mols):
for smarts_mol in smarts_mols:
if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol):
return False
return True
def pains(mol):
smarts_mols = load_smarts_patterns("data/filters/pains.csv")
return smarts_filter(mol, smarts_mols)
def mlsmr(mol):
smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv")
return smarts_filter(mol, smarts_mols)
def dundee(mol):
smarts_mols = load_smarts_patterns("data/filters/dundee.csv")
return smarts_filter(mol, smarts_mols)
def glaxo(mol):
smarts_mols = load_smarts_patterns("data/filters/glaxo.csv")
return smarts_filter(mol, smarts_mols)
def bms(mol):
smarts_mols = load_smarts_patterns("data/filters/bms.csv")
return smarts_filter(mol, smarts_mols)
SCORE_MAP = {
'Synthetic Accessibility': sascorer.calculateScore,
'LogP': Crippen.MolLogP,
'Molecular Weight': Descriptors.MolWt,
'Number of Atoms': rdMolDescriptors.CalcNumAtoms,
'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms,
'Molar Refractivity': Crippen.MolMR,
'H-Bond Donor Count': Lipinski.NumHDonors,
'H-Bond Acceptor Count': Lipinski.NumHAcceptors,
'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds,
'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA,
}
FILTER_MAP = {
# TODO support number_of_violations
'REOS': reos,
"Lipinski's Rule of Five": lipinski,
'Ghose': ghose,
'Rule of Three': rule_of_three,
'Veber': veber,
'PAINS': pains,
'MLSMR': mlsmr,
'Dundee': dundee,
'Glaxo': glaxo,
'BMS': bms,
}
def get_timezone_by_ip(ip):
try:
data = requests.get(f'https://worldtimeapi.org/api/ip/{ip}').json()
return data['timezone']
except Exception:
return 'UTC'
def ts_to_str(timestamp, timezone):
# Create a timezone-aware datetime object from the UNIX timestamp
dt = datetime.fromtimestamp(timestamp, pytz.utc)
# Convert the timezone-aware datetime object to the target timezone
target_timezone = pytz.timezone(timezone)
localized_dt = dt.astimezone(target_timezone)
# Format the datetime object to the specified string format
return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)')
def send_email(job_info):
if job_info.get('email'):
try:
email_info = job_info.copy()
email_serv = os.getenv('EMAIL_SERV')
email_port = os.getenv('EMAIL_PORT')
email_addr = os.getenv('EMAIL_ADDR')
email_pass = os.getenv('EMAIL_PASS')
email_form = os.getenv('EMAIL_FORM')
email_subj = os.getenv('EMAIL_SUBJ')
for key, value in email_info.items():
if key.endswith("time") and value:
email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip']))
server = smtplib.SMTP(email_serv, int(email_port))
# server.starttls()
server.login(email_addr, email_pass)
msg = MIMEMultipart("alternative")
msg["From"] = email_addr
msg["To"] = email_info['email']
msg["Subject"] = email_subj.format(**email_info)
msg["Date"] = formatdate(localtime=True)
msg["Message-ID"] = make_msgid()
msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html'))
msg.attach(MIMEText(email_form.format(**email_info), 'plain'))
server.sendmail(email_addr, email_info['email'], msg.as_string())
server.quit()
gr.Info('Email notification sent.')
except Exception as e:
gr.Warning('Failed to send email notification due to error: ' + str(e))
def read_molecule(path):
if path.endswith('.pdb'):
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True)
if path.endswith('.pdr'):
return open(path, 'r').read()
elif path.endswith('.mol'):
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol2'):
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True)
elif path.endswith('.sdf'):
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0]
raise Exception('Unknown file extension')
def read_molecule_file(in_file, allowed_extentions):
if isinstance(in_file, str):
path = in_file
else:
path = in_file.name
extension = path.split('.')[-1]
if extension not in allowed_extentions:
msg = static.INVALID_FORMAT_MSG.format(extension=extension)
return None, None, msg
try:
mol = read_molecule(path)
except Exception as e:
e = str(e).replace('\'', '')
msg = static.ERROR_FORMAT_MSG.format(message=e)
return None, None, msg
if extension in 'pdb':
content = Chem.MolToPDBBlock(mol)
elif extension in ['mol', 'mol2', 'sdf']:
content = Chem.MolToMolBlock(mol, kekulize=False)
extension = 'mol'
else:
raise NotImplementedError
return content, extension, None
# def create_complex_view_html(
# complex_path, pocket_path_dict=None,
# interactive_ligands=True, interactive_pockets=True
# ):
# """Generates HTML for complex visualization."""
# model_i = -1
# viewer_models = ""
# if complex_path:
# complex_data, extension, html = read_molecule_file(complex_path, allowed_extentions=['pdb'])
# viewer_models += f'viewer.addModel(`{complex_data}`, "pdb");'
# model_i += 1
# viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: false }}, proteinStyle);"
# viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: true }}, ligandStyle);"
# if interactive_ligands:
# # return ligand residue info when the ligand is clicked
# viewer_models += f"""
# let selectedLigand = null;
# viewer.getModel({model_i}).setClickable(
# {{ hetflag: true, byres: true }},
# true,
# function (_atom, _viewer, _event, _container) {{
# let currentLigand = {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }};
#
# if (selectedLigand === currentLigand) {{
# // Deselect ligand
# selectedLigand = null;
# _viewer.setStyle(
# {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }},
# ligandStyle
# );
# console.log("Deselected Residue:", currentLigand);
# window.parent.postMessage({{
# name: "ligand_selection",
# data: {{ residue: currentLigand, add: false }}
# }}, "*");
# }} else {{
# // Select ligand and deselect previous
# if (selectedLigand) {{
# _viewer.setStyle(
# {{
# resn: selectedLigand.resn,
# chain: selectedLigand.chain,
# resi: selectedLigand.resi
# }},
# ligandStyle
# );
# }}
# selectedLigand = currentLigand;
# _viewer.setStyle(
# {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }},
# {{ stick: {{ color: "red", radius: 0.4}} }}
# );
# console.log("Selected Residue:", currentLigand);
# window.parent.postMessage({{
# name: "ligand_selection",
# data: {{ residue: currentLigand, add: true }}
# }}, "*");
# }}
# _viewer.render();
# }}
# );
# """
# if pocket_path_dict:
# pocket_data_dict = {k: open(v, 'r').read() for k, v in pocket_path_dict.items()}
# for pocket_name, pocket_data in pocket_data_dict.items():
# viewer_models += f'viewer.addModel(`{pocket_data}`, "pqr");'
# model_i += 1
# viewer_models += f'viewer.getModel({model_i}).setStyle(pocketStyle);'
# if interactive_pockets:
# # return the pocket name when the pocket is clicked
# viewer_models += f"""
# let selectedPocket = null;
# viewer.getModel({model_i}).setClickable(
# {{ byres: true }},
# true,
# function (_atom, _viewer, _event, _container) {{
# let currentPocket = "{pocket_name}";
#
# if (selectedPocket == currentPocket) {{
# // Deselect pocket
# selectedPocket = null;
# _viewer.getModel({model_i}).setStyle( pocketStyle );
# console.log("Deselected Pocket:", currentPocket);
# window.parent.postMessage({{
# name: "pocket_selection",
# data: {{ pocket: currentPocket, add: false }}
# }}, "*");
# }} else {{
# // Select pocket and deselect previous
# if (selectedPocket) {{
# _viewer.getModel(selectedPocket).setStyle( pocketStyle );
# }}
# selectedPocket = currentPocket;
# _viewer.getModel({model_i}).setStyle(
# {{ sphere: {{ color: "red", opacity: 0.9}} }}
# );
# console.log("Selected Pocket:", currentPocket);
# window.parent.postMessage({{
# name: "pocket_selection",
# data: {{ pocket: currentPocket, add: true }}
# }}, "*");
# }}
# _viewer.render();
# }}
# );
# """
#
# html = static.COMPLEX_RENDERING_TEMPLATE.format(viewer_models=viewer_models)
# return static.IFRAME_TEMPLATE.format(html=html)
def prepare_df_for_table(result_df):
result_df.dropna(subset=['mol'], inplace=True)
rdDepictor.SetPreferCoordGen(True)
draw_opts = Draw.rdMolDraw2D.MolDrawOptions()
draw_opts.clearBackground = False
draw_opts.bondLineWidth = 0.5
draw_opts.explicitMethyl = True
draw_opts.singleColourWedgeBonds = True
draw_opts.addStereoAnnotation = False
draw_opts.useCDKAtomPalette()
def draw_mol(mol):
# Create a new drawer instance for each molecule (for efficiency)
drawer = Draw.MolDraw2DSVG(90, 56)
drawer.SetDrawOptions(draw_opts)
# Draw the molecule and return the SVG as a URI
drawer.DrawMolecule(mol)
drawer.FinishDrawing()
return urllib.parse.quote(drawer.GetDrawingText())
# Convert to URI-formatted inline SVG
result_df['Compound'] = result_df['mol'].apply(draw_mol)
return result_df
def create_result_table_html(summary_df, result_info=None, opts=(), progress=gr.Progress(track_tqdm=True)):
html_df = summary_df.copy().drop(columns=['mol'])
html_df.rename(columns=COL_ALIASES, inplace=True)
if result_info:
output_dir = Path(result_info['output_dir'])
job_type = result_info['type']
html_df['Pose'] = html_df['Pose'].apply(lambda x: str(output_dir / job_type / x))
hidden_cols = [col for col in html_df.columns if col.endswith('_path')]
rightmost_cols = ['Complex Name', 'Fragment SMILES', 'Compound SMILES']
col_order = ([col for col in html_df.columns if col not in rightmost_cols] +
[col for col in html_df.columns if col in rightmost_cols])
html_df = html_df[col_order]
html_df.index.name = 'Index'
# if 'Scaffold' in html_df.columns and 'Exclude Scaffold Graph' not in opts:
# html_df['Scaffold'] = html_df['Scaffold'].parallel_apply(
# lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x)
# else:
# html_df.drop(['Scaffold'], axis=1, inplace=True)
num_cols = html_df.select_dtypes('number').columns
num_col_colors = sns.color_palette('husl', len(num_cols))
bool_cols = html_df.select_dtypes(bool).columns
image_zoom_formatter = HTMLTemplateFormatter(
template='<img src="data:image/svg+xml,<%= value %>" alt="Molecule" class="zoom-img">'
)
bool_formatters = {col: BooleanFormatter() for col in bool_cols}
float_formatters = {col: NumberFormatter(format='0.000') for col in html_df.select_dtypes('floating').columns}
other_formatters = {
'Compound': image_zoom_formatter,
# 'Scaffold': image_zoom_formatter,
'Pose': {'type': 'molDisplayButtonFormatter'},
}
formatters = {**bool_formatters, **float_formatters, **other_formatters}
# html = df.to_html(file)
# return html
static_url = "gradio_api/file=app/static/"
pn.extension(
design='material',
css_files=[
static_url + 'panel.css'
],
js_files={
'panel_custom': static_url + 'panel.js',
},
)
report_table = pn.widgets.Tabulator(
html_df, formatters=formatters,
frozen_columns=['Index', 'Pose', 'Compound ID', 'Compound'],
hidden_columns=hidden_cols,
sizing_mode='stretch_both',
disabled=True, selectable=False,
pagination='local',
configuration={
'rowHeight': 60,
},
)
for i, col in enumerate(num_cols):
cmap = sns.light_palette(num_col_colors[i], as_cmap=True)
cmap.set_bad(color='white')
report_table.style.background_gradient(
subset=html_df.columns == col, cmap=cmap)
# TODO change this to use commonn substructures
# pie_charts = {}
# for y in html_df.columns.intersection(['Interaction Probability', 'Binding Affinity (IC50 [nM])']):
# for category in categories:
# pie_charts[y][category] = []
# for k in [10, 30, 100]:
# if k < len(html_df):
# pie_charts[y][category].append(create_pie_chart(html_df, category=category, value=y, top_k=k))
# else:
# pie_charts[y][category].append(create_pie_chart(html_df, category=category, value=y, top_k=len(html_df)))
# break
# # Add 'All' tab regardless of the prediction dataset size
# # pie_charts[y].append(create_pie_chart(html_df, category=category, value=y, top_k=len(html_df)))
#
# # Remove key-value pairs with an empty list
# pie_charts[y] = {k: v for k, v in pie_charts[y].items() if any(v)}
# pie_charts = {k: v for k, v in pie_charts.items() if any(v)}
# stats_pane = pn.Column()
# if pie_charts:
# for score_name, figure_dict in pie_charts.items():
# score_row = pn.Row()
# for category, figure_list in figure_dict.items():
# score_row.append(
# pn.Column(f'### {category} by Top {score_name}', pn.Tabs(*figure_list, tabs_location='above')),
# # pn.Card(pn.Row(v), title=f'{category} by Top {k}')
# )
# stats_pane.append(
# score_row
# )
#
# if stats_pane:
# template.main.append(
# pn.Card(stats_pane, sizing_mode='stretch_width', title='Summary Statistics', margin=10)
# )
if result_info:
table_title = (f"{job_type.title()} Results "
f"({'No Linkable Pairs' if job_type != 'linking' else 'Generated Molecules'})")
report = pn.Column(pn.Accordion(
(table_title, report_table),
toggle=True, margin=5, active=[0]
))
aspect_ratio = '1.090 / 1'
else:
report = report_table
aspect_ratio = '1.618 / 1'
with tempfile.TemporaryDirectory() as tmpdir:
file = Path(tmpdir) / 'report.html'
report.save(file)
# iframe_html = static.IFRAME_LINK_TEMPLATE.format(src="gradio_api/file=" + str(file))
html_str = file.read_text() # .replace('\'', '\"')
iframe_html = static.IFRAME_TEMPLATE.format(srcdoc=html.escape(html_str), aspect_ratio=aspect_ratio)
return iframe_html
def download_file(url):
"""Downloads a small file to a temporary location, preserving its filename."""
response = requests.get(url)
if response.status_code == 404:
raise ValueError('No record found for the provided PDB ID.')
response.raise_for_status()
filename = Path(url).name
temp_dir = Path(tempfile.gettempdir()) / 'gradio'
temp_path = temp_dir / filename
temp_path.write_bytes(response.content)
return str(temp_path)
def uniprot_to_pdb(uniprot_id):
"""Queries the RCSB PDB API to find PDB entities associated with a UniProt ID."""
base_url = "https://search.rcsb.org/rcsbsearch/v2/query"
query_payload = {
"query": {
"type": "group",
"logical_operator": "and",
"nodes": [
{
"type": "terminal",
"service": "text",
"parameters": {
"operator": "exact_match",
"value": uniprot_id,
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_accession"
}
},
{
"type": "terminal",
"service": "text",
"parameters": {
"operator": "exact_match",
"value": "UniProt",
"attribute": "rcsb_polymer_entity_container_identifiers.reference_sequence_identifiers.database_name"
}
}
]
},
"return_type": "entry"
}
try:
# Send POST request with JSON payload
response = requests.post(base_url, json=query_payload)
response.raise_for_status()
data = response.json()
return [entry["identifier"] for entry in data.get("result_set", [])]
except Exception as e:
return []
def fasta_to_pdb(fasta_sequence):
"""Queries the RCSB PDB API to find PDB IDs associated with a FASTA sequence."""
base_url = "https://search.rcsb.org/rcsbsearch/v2/query"
query_payload = {
"query": {
"type": "terminal",
"service": "sequence",
"parameters": {
"evalue_cutoff": 1,
"identity_cutoff": 0.9,
"sequence_type": "protein",
"value": fasta_sequence
}
},
"request_options": {
"scoring_strategy": "sequence"
},
"return_type": "entry"
}
try:
# Send POST request with JSON payload
response = requests.post(base_url, json=query_payload)
response.raise_for_status()
data = response.json()
return [entry["identifier"] for entry in data.get("result_set", [])]
except Exception as e:
return []
|