File size: 10,342 Bytes
9439b9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import torch
from rdkit import Chem
import os
import imageio
import matplotlib.pyplot as plt
import numpy as np

from openbabel import openbabel as ob
from sklearn.decomposition import PCA

from src import const
from src.molecule_builder import get_bond_order

ob.obErrorLog.SetOutputLevel(1)

def save_xyz_files(path, one_hot, positions, node_mask, names, is_geom, suffix=''):
    idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM

    for batch_i in range(one_hot.size(0)):
        mask = node_mask[batch_i].squeeze()
        n_atoms = mask.sum()
        atom_idx = torch.where(mask)[0]

        f = open(os.path.join(path, f'{names[batch_i]}_{suffix}.xyz'), "w")
        f.write("%d\n\n" % n_atoms)
        atoms = torch.argmax(one_hot[batch_i], dim=1)
        for atom_i in atom_idx:
            atom = atoms[atom_i].item()
            atom = idx2atom[atom]
            f.write("%s %.9f %.9f %.9f\n" % (
                atom, positions[batch_i, atom_i, 0], positions[batch_i, atom_i, 1], positions[batch_i, atom_i, 2]
            ))
        f.close()


# def coords_to_mol(one_hot, positions, node_mask, is_geom):
#     # Select atom mapping based on whether geometry or generic atoms are used
#     idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
#
#     # Identify valid atoms based on the mask
#     mask = node_mask.squeeze()
#     atom_indices = torch.where(mask)[0]
#
#     # Create an editable molecule object
#     mol = Chem.RWMol()
#
#     # Add atoms to the molecule
#     atoms = torch.argmax(one_hot, dim=1)
#     for idx, atom_i in enumerate(atom_indices):
#         atom = atoms[atom_i].item()
#         atom_symbol = idx2atom[atom]
#         mol.AddAtom(Chem.Atom(atom_symbol))
#
#     # Add a conformer to the molecule to set atom positions
#     conformer = Chem.Conformer(mol.GetNumAtoms())
#     mol.AddConformer(conformer)
#
#     # Set atom positions
#     for idx, atom_i in enumerate(atom_indices):
#         mol.GetConformer().SetAtomPosition(idx, (
#             positions[atom_i, 0].item(),
#             positions[atom_i, 1].item(),
#             positions[atom_i, 2].item()
#         ))
#
#     # Generate and return SMILES
#     smiles = Chem.MolToSmiles(mol)
#     return smiles, mol


def save_sdf(path, one_hot, positions, node_mask, is_geom):
    # Select atom mapping based on whether geometry or generic atoms are used
    idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM

    # Identify valid atoms based on the mask
    mask = node_mask.squeeze()
    atom_indices = torch.where(mask)[0]

    obMol = ob.OBMol()
    # Add atoms to OpenBabel molecule
    atoms = torch.argmax(one_hot, dim=1)
    for atom_i in atom_indices:
        atom = atoms[atom_i].item()
        atom_symbol = idx2atom[atom]
        obAtom = obMol.NewAtom()
        obAtom.SetAtomicNum(Chem.GetPeriodicTable().GetAtomicNumber(atom_symbol))  # Set atomic number

        # Set atomic positions
        pos = positions[atom_i]
        obAtom.SetVector(pos[0].item(), pos[1].item(), pos[2].item())

    # Infer bonds with OpenBabel
    obMol.ConnectTheDots()
    obMol.PerceiveBondOrders()

    # Convert OpenBabel molecule to SDF
    obConversion = ob.OBConversion()
    obConversion.SetOutFormat("sdf")
    sdf_string = obConversion.WriteString(obMol)

    # Save SDF file
    with open(path, "w") as f:
        f.write(sdf_string)

    # Generate SMILES
    rdkit_mol = Chem.MolFromMolBlock(sdf_string)
    if rdkit_mol is not None:
        smiles = Chem.MolToSmiles(rdkit_mol)
    else:
        # Use OpenBabel to generate SMILES if RDKit fails
        obConversion.SetOutFormat("can")
        smiles = obConversion.WriteString(obMol).strip()

    return smiles


def load_xyz_files(path, suffix=''):
    files = []
    for fname in os.listdir(path):
        if fname.endswith(f'_{suffix}.xyz'):
            files.append(fname)
    files = sorted(files, key=lambda f: -int(f.replace(f'_{suffix}.xyz', '').split('_')[-1]))
    return [os.path.join(path, fname) for fname in files]


def load_molecule_xyz(file, is_geom):
    atom2idx = const.GEOM_ATOM2IDX if is_geom else const.ATOM2IDX
    idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
    with open(file, encoding='utf8') as f:
        n_atoms = int(f.readline())
        one_hot = torch.zeros(n_atoms, len(idx2atom))
        charges = torch.zeros(n_atoms, 1)
        positions = torch.zeros(n_atoms, 3)
        f.readline()
        atoms = f.readlines()
        for i in range(n_atoms):
            atom = atoms[i].split(' ')
            atom_type = atom[0]
            one_hot[i, atom2idx[atom_type]] = 1
            position = torch.Tensor([float(e) for e in atom[1:]])
            positions[i, :] = position
        return positions, one_hot, charges


def draw_sphere(ax, x, y, z, size, color, alpha):
    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)

    xs = size * np.outer(np.cos(u), np.sin(v))
    ys = size * np.outer(np.sin(u), np.sin(v)) #* 0.8
    zs = size * np.outer(np.ones(np.size(u)), np.cos(v))
    ax.plot_surface(x + xs, y + ys, z + zs, rstride=2, cstride=2, color=color, alpha=alpha)


def plot_molecule(ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom, fragment_mask=None):
    x = positions[:, 0]
    y = positions[:, 1]
    z = positions[:, 2]
    # Hydrogen, Carbon, Nitrogen, Oxygen, Flourine

    idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM

    colors_dic = np.array(const.COLORS)
    radius_dic = np.array(const.RADII)
    area_dic = 1500 * radius_dic ** 2

    areas = area_dic[atom_type]
    radii = radius_dic[atom_type]
    colors = colors_dic[atom_type]

    if fragment_mask is None:
        fragment_mask = torch.ones(len(x))

    for i in range(len(x)):
        for j in range(i + 1, len(x)):
            p1 = np.array([x[i], y[i], z[i]])
            p2 = np.array([x[j], y[j], z[j]])
            dist = np.sqrt(np.sum((p1 - p2) ** 2))
            atom1, atom2 = idx2atom[atom_type[i]], idx2atom[atom_type[j]]
            draw_edge_int = get_bond_order(atom1, atom2, dist)
            line_width = (3 - 2) * 2 * 2
            draw_edge = draw_edge_int > 0
            if draw_edge:
                if draw_edge_int == 4:
                    linewidth_factor = 1.5
                else:
                    linewidth_factor = 1
                linewidth_factor *= 0.5
                ax.plot(
                    [x[i], x[j]], [y[i], y[j]], [z[i], z[j]],
                    linewidth=line_width * linewidth_factor * 2,
                    c=hex_bg_color,
                    alpha=alpha
                )

    # from pdb import set_trace
    # set_trace()

    if spheres_3d:
        # idx = torch.where(fragment_mask[:len(x)] == 0)[0]
        # ax.scatter(
        #     x[idx],
        #     y[idx],
        #     z[idx],
        #     alpha=0.9 * alpha,
        #     edgecolors='#FCBA03',
        #     facecolors='none',
        #     linewidths=2,
        #     s=900
        # )
        for i, j, k, s, c, f in zip(x, y, z, radii, colors, fragment_mask):
            if f == 1:
                alpha = 1.0

            draw_sphere(ax, i.item(), j.item(), k.item(), 0.5 * s, c, alpha)

    else:
        ax.scatter(x, y, z, s=areas, alpha=0.9 * alpha, c=colors)


def plot_data3d(positions, atom_type, is_geom, camera_elev=0, camera_azim=0, save_path=None, spheres_3d=False,
                bg='black', alpha=1., fragment_mask=None):
    black = (0, 0, 0)
    white = (1, 1, 1)
    hex_bg_color = '#FFFFFF' if bg == 'black' else '#000000' #'#666666'

    fig = plt.figure(figsize=(10, 10))
    ax = fig.add_subplot(projection='3d')
    ax.set_aspect('auto')
    ax.view_init(elev=camera_elev, azim=camera_azim)
    if bg == 'black':
        ax.set_facecolor(black)
    else:
        ax.set_facecolor(white)
    ax.xaxis.pane.set_alpha(0)
    ax.yaxis.pane.set_alpha(0)
    ax.zaxis.pane.set_alpha(0)
    ax._axis3don = False

    if bg == 'black':
        ax.w_xaxis.line.set_color("black")
    else:
        ax.w_xaxis.line.set_color("white")

    plot_molecule(
        ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom=is_geom, fragment_mask=fragment_mask
    )

    max_value = positions.abs().max().item()
    axis_lim = min(40, max(max_value / 1.5 + 0.3, 3.2))
    ax.set_xlim(-axis_lim, axis_lim)
    ax.set_ylim(-axis_lim, axis_lim)
    ax.set_zlim(-axis_lim, axis_lim)
    dpi = 120 if spheres_3d else 50

    if save_path is not None:
        plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi)
        # plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi, transparent=True)

        if spheres_3d:
            img = imageio.imread(save_path)
            img_brighter = np.clip(img * 1.4, 0, 255).astype('uint8')
            imageio.imsave(save_path, img_brighter)
    else:
        plt.show()
    plt.close()


def visualize_chain(
        path, spheres_3d=False, bg="black", alpha=1.0, wandb=None, mode="chain", is_geom=False, fragment_mask=None
):
    files = load_xyz_files(path)
    save_paths = []

    # Fit PCA to the final molecule – to obtain the best orientation for visualization
    positions, one_hot, charges = load_molecule_xyz(files[-1], is_geom=is_geom)
    pca = PCA(n_components=3)
    pca.fit(positions)

    for i in range(len(files)):
        file = files[i]

        positions, one_hot, charges = load_molecule_xyz(file, is_geom=is_geom)
        atom_type = torch.argmax(one_hot, dim=1).numpy()

        # Transform positions of each frame according to the best orientation of the last frame
        positions = pca.transform(positions)
        positions = torch.tensor(positions)

        fn = file[:-4] + '.png'
        plot_data3d(
            positions, atom_type,
            save_path=fn,
            spheres_3d=spheres_3d,
            alpha=alpha,
            bg=bg,
            camera_elev=90,
            camera_azim=90,
            is_geom=is_geom,
            fragment_mask=fragment_mask,
        )
        save_paths.append(fn)

    imgs = [imageio.imread(fn) for fn in save_paths]
    dirname = os.path.dirname(save_paths[0])
    gif_path = dirname + '/output.gif'
    imageio.mimsave(gif_path, imgs, subrectangles=True)

    if wandb is not None:
        wandb.log({mode: [wandb.Video(gif_path, caption=gif_path)]})