Spaces:
Sleeping
Sleeping
File size: 10,342 Bytes
9439b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import torch
from rdkit import Chem
import os
import imageio
import matplotlib.pyplot as plt
import numpy as np
from openbabel import openbabel as ob
from sklearn.decomposition import PCA
from src import const
from src.molecule_builder import get_bond_order
ob.obErrorLog.SetOutputLevel(1)
def save_xyz_files(path, one_hot, positions, node_mask, names, is_geom, suffix=''):
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
for batch_i in range(one_hot.size(0)):
mask = node_mask[batch_i].squeeze()
n_atoms = mask.sum()
atom_idx = torch.where(mask)[0]
f = open(os.path.join(path, f'{names[batch_i]}_{suffix}.xyz'), "w")
f.write("%d\n\n" % n_atoms)
atoms = torch.argmax(one_hot[batch_i], dim=1)
for atom_i in atom_idx:
atom = atoms[atom_i].item()
atom = idx2atom[atom]
f.write("%s %.9f %.9f %.9f\n" % (
atom, positions[batch_i, atom_i, 0], positions[batch_i, atom_i, 1], positions[batch_i, atom_i, 2]
))
f.close()
# def coords_to_mol(one_hot, positions, node_mask, is_geom):
# # Select atom mapping based on whether geometry or generic atoms are used
# idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
#
# # Identify valid atoms based on the mask
# mask = node_mask.squeeze()
# atom_indices = torch.where(mask)[0]
#
# # Create an editable molecule object
# mol = Chem.RWMol()
#
# # Add atoms to the molecule
# atoms = torch.argmax(one_hot, dim=1)
# for idx, atom_i in enumerate(atom_indices):
# atom = atoms[atom_i].item()
# atom_symbol = idx2atom[atom]
# mol.AddAtom(Chem.Atom(atom_symbol))
#
# # Add a conformer to the molecule to set atom positions
# conformer = Chem.Conformer(mol.GetNumAtoms())
# mol.AddConformer(conformer)
#
# # Set atom positions
# for idx, atom_i in enumerate(atom_indices):
# mol.GetConformer().SetAtomPosition(idx, (
# positions[atom_i, 0].item(),
# positions[atom_i, 1].item(),
# positions[atom_i, 2].item()
# ))
#
# # Generate and return SMILES
# smiles = Chem.MolToSmiles(mol)
# return smiles, mol
def save_sdf(path, one_hot, positions, node_mask, is_geom):
# Select atom mapping based on whether geometry or generic atoms are used
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
# Identify valid atoms based on the mask
mask = node_mask.squeeze()
atom_indices = torch.where(mask)[0]
obMol = ob.OBMol()
# Add atoms to OpenBabel molecule
atoms = torch.argmax(one_hot, dim=1)
for atom_i in atom_indices:
atom = atoms[atom_i].item()
atom_symbol = idx2atom[atom]
obAtom = obMol.NewAtom()
obAtom.SetAtomicNum(Chem.GetPeriodicTable().GetAtomicNumber(atom_symbol)) # Set atomic number
# Set atomic positions
pos = positions[atom_i]
obAtom.SetVector(pos[0].item(), pos[1].item(), pos[2].item())
# Infer bonds with OpenBabel
obMol.ConnectTheDots()
obMol.PerceiveBondOrders()
# Convert OpenBabel molecule to SDF
obConversion = ob.OBConversion()
obConversion.SetOutFormat("sdf")
sdf_string = obConversion.WriteString(obMol)
# Save SDF file
with open(path, "w") as f:
f.write(sdf_string)
# Generate SMILES
rdkit_mol = Chem.MolFromMolBlock(sdf_string)
if rdkit_mol is not None:
smiles = Chem.MolToSmiles(rdkit_mol)
else:
# Use OpenBabel to generate SMILES if RDKit fails
obConversion.SetOutFormat("can")
smiles = obConversion.WriteString(obMol).strip()
return smiles
def load_xyz_files(path, suffix=''):
files = []
for fname in os.listdir(path):
if fname.endswith(f'_{suffix}.xyz'):
files.append(fname)
files = sorted(files, key=lambda f: -int(f.replace(f'_{suffix}.xyz', '').split('_')[-1]))
return [os.path.join(path, fname) for fname in files]
def load_molecule_xyz(file, is_geom):
atom2idx = const.GEOM_ATOM2IDX if is_geom else const.ATOM2IDX
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
with open(file, encoding='utf8') as f:
n_atoms = int(f.readline())
one_hot = torch.zeros(n_atoms, len(idx2atom))
charges = torch.zeros(n_atoms, 1)
positions = torch.zeros(n_atoms, 3)
f.readline()
atoms = f.readlines()
for i in range(n_atoms):
atom = atoms[i].split(' ')
atom_type = atom[0]
one_hot[i, atom2idx[atom_type]] = 1
position = torch.Tensor([float(e) for e in atom[1:]])
positions[i, :] = position
return positions, one_hot, charges
def draw_sphere(ax, x, y, z, size, color, alpha):
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
xs = size * np.outer(np.cos(u), np.sin(v))
ys = size * np.outer(np.sin(u), np.sin(v)) #* 0.8
zs = size * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x + xs, y + ys, z + zs, rstride=2, cstride=2, color=color, alpha=alpha)
def plot_molecule(ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom, fragment_mask=None):
x = positions[:, 0]
y = positions[:, 1]
z = positions[:, 2]
# Hydrogen, Carbon, Nitrogen, Oxygen, Flourine
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
colors_dic = np.array(const.COLORS)
radius_dic = np.array(const.RADII)
area_dic = 1500 * radius_dic ** 2
areas = area_dic[atom_type]
radii = radius_dic[atom_type]
colors = colors_dic[atom_type]
if fragment_mask is None:
fragment_mask = torch.ones(len(x))
for i in range(len(x)):
for j in range(i + 1, len(x)):
p1 = np.array([x[i], y[i], z[i]])
p2 = np.array([x[j], y[j], z[j]])
dist = np.sqrt(np.sum((p1 - p2) ** 2))
atom1, atom2 = idx2atom[atom_type[i]], idx2atom[atom_type[j]]
draw_edge_int = get_bond_order(atom1, atom2, dist)
line_width = (3 - 2) * 2 * 2
draw_edge = draw_edge_int > 0
if draw_edge:
if draw_edge_int == 4:
linewidth_factor = 1.5
else:
linewidth_factor = 1
linewidth_factor *= 0.5
ax.plot(
[x[i], x[j]], [y[i], y[j]], [z[i], z[j]],
linewidth=line_width * linewidth_factor * 2,
c=hex_bg_color,
alpha=alpha
)
# from pdb import set_trace
# set_trace()
if spheres_3d:
# idx = torch.where(fragment_mask[:len(x)] == 0)[0]
# ax.scatter(
# x[idx],
# y[idx],
# z[idx],
# alpha=0.9 * alpha,
# edgecolors='#FCBA03',
# facecolors='none',
# linewidths=2,
# s=900
# )
for i, j, k, s, c, f in zip(x, y, z, radii, colors, fragment_mask):
if f == 1:
alpha = 1.0
draw_sphere(ax, i.item(), j.item(), k.item(), 0.5 * s, c, alpha)
else:
ax.scatter(x, y, z, s=areas, alpha=0.9 * alpha, c=colors)
def plot_data3d(positions, atom_type, is_geom, camera_elev=0, camera_azim=0, save_path=None, spheres_3d=False,
bg='black', alpha=1., fragment_mask=None):
black = (0, 0, 0)
white = (1, 1, 1)
hex_bg_color = '#FFFFFF' if bg == 'black' else '#000000' #'#666666'
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(projection='3d')
ax.set_aspect('auto')
ax.view_init(elev=camera_elev, azim=camera_azim)
if bg == 'black':
ax.set_facecolor(black)
else:
ax.set_facecolor(white)
ax.xaxis.pane.set_alpha(0)
ax.yaxis.pane.set_alpha(0)
ax.zaxis.pane.set_alpha(0)
ax._axis3don = False
if bg == 'black':
ax.w_xaxis.line.set_color("black")
else:
ax.w_xaxis.line.set_color("white")
plot_molecule(
ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom=is_geom, fragment_mask=fragment_mask
)
max_value = positions.abs().max().item()
axis_lim = min(40, max(max_value / 1.5 + 0.3, 3.2))
ax.set_xlim(-axis_lim, axis_lim)
ax.set_ylim(-axis_lim, axis_lim)
ax.set_zlim(-axis_lim, axis_lim)
dpi = 120 if spheres_3d else 50
if save_path is not None:
plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi)
# plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi, transparent=True)
if spheres_3d:
img = imageio.imread(save_path)
img_brighter = np.clip(img * 1.4, 0, 255).astype('uint8')
imageio.imsave(save_path, img_brighter)
else:
plt.show()
plt.close()
def visualize_chain(
path, spheres_3d=False, bg="black", alpha=1.0, wandb=None, mode="chain", is_geom=False, fragment_mask=None
):
files = load_xyz_files(path)
save_paths = []
# Fit PCA to the final molecule – to obtain the best orientation for visualization
positions, one_hot, charges = load_molecule_xyz(files[-1], is_geom=is_geom)
pca = PCA(n_components=3)
pca.fit(positions)
for i in range(len(files)):
file = files[i]
positions, one_hot, charges = load_molecule_xyz(file, is_geom=is_geom)
atom_type = torch.argmax(one_hot, dim=1).numpy()
# Transform positions of each frame according to the best orientation of the last frame
positions = pca.transform(positions)
positions = torch.tensor(positions)
fn = file[:-4] + '.png'
plot_data3d(
positions, atom_type,
save_path=fn,
spheres_3d=spheres_3d,
alpha=alpha,
bg=bg,
camera_elev=90,
camera_azim=90,
is_geom=is_geom,
fragment_mask=fragment_mask,
)
save_paths.append(fn)
imgs = [imageio.imread(fn) for fn in save_paths]
dirname = os.path.dirname(save_paths[0])
gif_path = dirname + '/output.gif'
imageio.mimsave(gif_path, imgs, subrectangles=True)
if wandb is not None:
wandb.log({mode: [wandb.Video(gif_path, caption=gif_path)]})
|