Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from scipy.stats import beta | |
from utils.geometry import axis_angle_to_matrix, rigid_transform_Kabsch_3D_torch, rigid_transform_Kabsch_3D_torch_batch | |
from utils.torsion import modify_conformer_torsion_angles, modify_conformer_torsion_angles_batch | |
def sigmoid(t): | |
return 1 / (1 + np.e**(-t)) | |
def sigmoid_schedule(t, k=10, m=0.5): | |
s = lambda t: sigmoid(k*(t-m)) | |
return (s(t)-s(0))/(s(1)-s(0)) | |
def t_to_sigma_individual(t, schedule_type, sigma_min, sigma_max, schedule_k=10, schedule_m=0.4): | |
if schedule_type == "exponential": | |
return sigma_min ** (1 - t) * sigma_max ** t | |
elif schedule_type == 'sigmoid': | |
return sigmoid_schedule(t, k=schedule_k, m=schedule_m) * (sigma_max - sigma_min) + sigma_min | |
def t_to_sigma(t_tr, t_rot, t_tor, args): | |
tr_sigma = args.tr_sigma_min ** (1-t_tr) * args.tr_sigma_max ** t_tr | |
rot_sigma = args.rot_sigma_min ** (1-t_rot) * args.rot_sigma_max ** t_rot | |
tor_sigma = args.tor_sigma_min ** (1-t_tor) * args.tor_sigma_max ** t_tor | |
return tr_sigma, rot_sigma, tor_sigma | |
def modify_conformer(data, tr_update, rot_update, torsion_updates, pivot=None): | |
lig_center = torch.mean(data['ligand'].pos, dim=0, keepdim=True) | |
rot_mat = axis_angle_to_matrix(rot_update.squeeze()) | |
rigid_new_pos = (data['ligand'].pos - lig_center) @ rot_mat.T + tr_update + lig_center | |
if torsion_updates is not None: | |
flexible_new_pos = modify_conformer_torsion_angles(rigid_new_pos, | |
data['ligand', 'ligand'].edge_index.T[data['ligand'].edge_mask], | |
data['ligand'].mask_rotate if isinstance(data['ligand'].mask_rotate, np.ndarray) else data['ligand'].mask_rotate[0], | |
torsion_updates).to(rigid_new_pos.device) | |
if pivot is None: | |
R, t = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, rigid_new_pos.T) | |
aligned_flexible_pos = flexible_new_pos @ R.T + t.T | |
else: | |
R1, t1 = rigid_transform_Kabsch_3D_torch(pivot.T, rigid_new_pos.T) | |
R2, t2 = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, pivot.T) | |
aligned_flexible_pos = (flexible_new_pos @ R2.T + t2.T) @ R1.T + t1.T | |
data['ligand'].pos = aligned_flexible_pos | |
else: | |
data['ligand'].pos = rigid_new_pos | |
return data | |
def modify_conformer_batch(orig_pos, data, tr_update, rot_update, torsion_updates, mask_rotate): | |
B = data.num_graphs | |
N, M, R = data['ligand'].num_nodes // B, data['ligand', 'ligand'].num_edges // B, data['ligand'].edge_mask.sum().item() // B | |
pos, edge_index, edge_mask = orig_pos.reshape(B, N, 3) + 0, data['ligand', 'ligand'].edge_index[:, :M], data['ligand'].edge_mask[:M] | |
torsion_updates = torsion_updates.reshape(B, -1) if torsion_updates is not None else None | |
lig_center = torch.mean(pos, dim=1, keepdim=True) | |
rot_mat = axis_angle_to_matrix(rot_update) | |
rigid_new_pos = torch.bmm(pos - lig_center, rot_mat.permute(0, 2, 1)) + tr_update.unsqueeze(1) + lig_center | |
if torsion_updates is not None: | |
flexible_new_pos = modify_conformer_torsion_angles_batch(rigid_new_pos, edge_index.T[edge_mask], mask_rotate, torsion_updates) | |
R, t = rigid_transform_Kabsch_3D_torch_batch(flexible_new_pos, rigid_new_pos) | |
aligned_flexible_pos = torch.bmm(flexible_new_pos, R.transpose(1, 2)) + t.transpose(1, 2) | |
final_pos = aligned_flexible_pos.reshape(-1, 3) | |
else: | |
final_pos = rigid_new_pos.reshape(-1, 3) | |
return final_pos | |
def modify_conformer_coordinates(pos, tr_update, rot_update, torsion_updates, edge_mask, mask_rotate, edge_index): | |
# Made this function which does the same as modify_conformer because passing a graph would require | |
# creating a new heterograph for reach graph when unbatching a batch of graphs | |
lig_center = torch.mean(pos, dim=0, keepdim=True) | |
rot_mat = axis_angle_to_matrix(rot_update.squeeze()) | |
rigid_new_pos = (pos - lig_center) @ rot_mat.T + tr_update + lig_center | |
if torsion_updates is not None: | |
flexible_new_pos = modify_conformer_torsion_angles(rigid_new_pos,edge_index.T[edge_mask],mask_rotate \ | |
if isinstance(mask_rotate, np.ndarray) else mask_rotate[0], torsion_updates).to(rigid_new_pos.device) | |
R, t = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, rigid_new_pos.T) | |
aligned_flexible_pos = flexible_new_pos @ R.T + t.T | |
return aligned_flexible_pos | |
else: | |
return rigid_new_pos | |
def sinusoidal_embedding(timesteps, embedding_dim, max_positions=10000): | |
""" from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py """ | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(max_positions) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = F.pad(emb, (0, 1), mode='constant') | |
assert emb.shape == (timesteps.shape[0], embedding_dim) | |
return emb | |
class GaussianFourierProjection(nn.Module): | |
"""Gaussian Fourier embeddings for noise levels. | |
from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/layerspp.py#L32 | |
""" | |
def __init__(self, embedding_size=256, scale=1.0): | |
super().__init__() | |
self.W = nn.Parameter(torch.randn(embedding_size//2) * scale, requires_grad=False) | |
def forward(self, x): | |
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi | |
emb = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) | |
return emb | |
def get_timestep_embedding(embedding_type, embedding_dim, embedding_scale=10000): | |
if embedding_type == 'sinusoidal': | |
emb_func = (lambda x : sinusoidal_embedding(embedding_scale * x, embedding_dim)) | |
elif embedding_type == 'fourier': | |
emb_func = GaussianFourierProjection(embedding_size=embedding_dim, scale=embedding_scale) | |
else: | |
raise NotImplemented | |
return emb_func | |
def get_t_schedule(sigma_schedule, inference_steps, inf_sched_alpha=1, inf_sched_beta=1, t_max=1): | |
if sigma_schedule == 'expbeta': | |
lin_max = beta.cdf(t_max, a=inf_sched_alpha, b=inf_sched_beta) | |
c = np.linspace(lin_max, 0, inference_steps + 1)[:-1] | |
return beta.ppf(c, a=inf_sched_alpha, b=inf_sched_beta) | |
raise Exception() | |
def set_time(complex_graphs, t, t_tr, t_rot, t_tor, batchsize, all_atoms, device, include_miscellaneous_atoms=False): | |
complex_graphs['ligand'].node_t = { | |
'tr': t_tr * torch.ones(complex_graphs['ligand'].num_nodes).to(device), | |
'rot': t_rot * torch.ones(complex_graphs['ligand'].num_nodes).to(device), | |
'tor': t_tor * torch.ones(complex_graphs['ligand'].num_nodes).to(device)} | |
complex_graphs['receptor'].node_t = { | |
'tr': t_tr * torch.ones(complex_graphs['receptor'].num_nodes).to(device), | |
'rot': t_rot * torch.ones(complex_graphs['receptor'].num_nodes).to(device), | |
'tor': t_tor * torch.ones(complex_graphs['receptor'].num_nodes).to(device)} | |
complex_graphs.complex_t = {'tr': t_tr * torch.ones(batchsize).to(device), | |
'rot': t_rot * torch.ones(batchsize).to(device), | |
'tor': t_tor * torch.ones(batchsize).to(device)} | |
if all_atoms: | |
complex_graphs['atom'].node_t = { | |
'tr': t_tr * torch.ones(complex_graphs['atom'].num_nodes).to(device), | |
'rot': t_rot * torch.ones(complex_graphs['atom'].num_nodes).to(device), | |
'tor': t_tor * torch.ones(complex_graphs['atom'].num_nodes).to(device)} | |
if include_miscellaneous_atoms and not all_atoms: | |
complex_graphs['misc_atom'].node_t = { | |
'tr': t_tr * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device), | |
'rot': t_rot * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device), | |
'tor': t_tor * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device)} | |