GenFBDD / compute_metrics.py
libokj's picture
Minify
c17cba8
#!/usr/bin/env python
import csv
import numpy as np
import pandas as pd
import sys
from networkx.algorithms import isomorphism
from rdkit import Chem
from rdkit.Chem import MolStandardize, QED, rdMolAlign, rdMolDescriptors
from src.delinker_utils import calc_SC_RDKit, frag_utils, sascorer
from src.utils import disable_rdkit_logging
from tqdm import tqdm
from pdb import set_trace
disable_rdkit_logging()
if len(sys.argv) != 9:
print("Not provided all arguments")
quit()
data_set = sys.argv[1] # Options: ZINC, CASF
gen_smi_file = sys.argv[2] # Path to generated molecules
train_set_path = sys.argv[3] # Path to training set
n_cores = int(sys.argv[4]) # Number of cores to use
verbose = bool(sys.argv[5]) # Output results
if sys.argv[6] == "None":
restrict = None
else:
restrict = int(sys.argv[6]) # Set to None if don't want to restrict
pains_smarts_loc = sys.argv[7] # Path to PAINS SMARTS
method = sys.argv[8]
assert method in ['diffusion', '3dlinker', 'delinker']
if verbose:
print("##### Start Settings #####")
print("Data set:", data_set)
print("Generated smiles file:", gen_smi_file)
print("Training set:", train_set_path)
print("Number of cores:", n_cores)
print("Verbose:", verbose)
print("Restrict data:", restrict)
print("PAINS SMARTS location:", pains_smarts_loc)
print("##### End Settings #####")
# Load molecules
# FORMAT: (Starting fragments (SMILES), Original molecule (SMILES), Generated molecule (SMILES), Generated linker)
data = []
with open(gen_smi_file, 'r') as f:
for line in tqdm(f.readlines()):
parts = line.strip().split(' ')
data.append({
'fragments': parts[0],
'true_molecule': parts[1],
'pred_molecule': parts[2],
'pred_linker': parts[3] if len(parts) > 3 else '',
})
if restrict is not None:
data = data[:restrict]
summary = {}
# -------------- Validity -------------- #
def is_valid(pred_mol_smiles, frag_smiles):
pred_mol = Chem.MolFromSmiles(pred_mol_smiles)
frag = Chem.MolFromSmiles(frag_smiles)
if frag is None:
return False
if pred_mol is None:
return False
try:
Chem.SanitizeMol(pred_mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
except Exception:
return False
if len(pred_mol.GetSubstructMatch(frag)) != frag.GetNumAtoms():
return False
return True
valid_cnt = 0
total_cnt = 0
for obj in tqdm(data):
valid = is_valid(obj['pred_molecule'], obj['fragments'])
obj['valid'] = valid
valid_cnt += valid
total_cnt += 1
validity = valid_cnt / total_cnt * 100
print(f'Validity: {validity:.3f}%')
summary['validity'] = validity
# ----------------- QED ------------------ #
qed_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['qed'] = None
continue
qed = QED.qed(Chem.MolFromSmiles(obj['pred_molecule']))
obj['qed'] = qed
qed_values.append(qed)
print(f'Mean QED: {np.mean(qed_values):.3f}')
summary['qed'] = np.mean(qed_values)
# ----------------- SA ------------------ #
sa_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['sa'] = None
continue
sa = sascorer.calculateScore(Chem.MolFromSmiles(obj['pred_molecule']))
obj['sa'] = sa
sa_values.append(sa)
print(f'Mean SA: {np.mean(sa_values):.3f}')
summary['sa'] = np.mean(sa_values)
# ----------------- Number of Rings ------------------ #
rings_n_values = []
for obj in tqdm(data):
if not obj['valid']:
obj['rings_n'] = None
continue
try:
rings_n = rdMolDescriptors.CalcNumRings(Chem.MolFromSmiles(obj['pred_linker']))
except:
continue
obj['rings_n'] = rings_n
rings_n_values.append(rings_n)
print(f'Mean Number of Rings: {np.mean(rings_n_values):.3f}')
summary['rings_n'] = np.mean(rings_n_values)
# -------------- Uniqueness -------------- #
true2samples = dict()
for obj in tqdm(data):
if not obj['valid']:
continue
true_mol = obj['true_molecule']
true_frags = obj['fragments']
key = f'{true_mol}_{true_frags}'
true2samples.setdefault(key, []).append(obj['pred_molecule'])
unique_cnt = 0
total_cnt = 0
for samples in tqdm(true2samples.values()):
unique_cnt += len(set(samples))
total_cnt += len(samples)
uniqueness = unique_cnt / total_cnt * 100
print(f'Uniqueness: {uniqueness:.3f}%')
summary['uniqueness'] = uniqueness
# ----------------- Novelty ---------------- #
linkers_train = set()
with open(train_set_path, 'r') as f:
for line in f:
linkers_train.add(line.strip())
novel_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['pred_linker_clean'] = None
obj['novel'] = False
continue
try:
linker = Chem.RemoveStereochemistry(obj['pred_linker'])
linker = MolStandardize.canonicalize_tautomer_smiles(Chem.MolToSmiles(linker))
except Exception:
linker = obj['pred_linker']
novel = linker not in linkers_train
obj['pred_linker_clean'] = linker
obj['novel'] = novel
novel_cnt += novel
total_cnt += 1
novelty = novel_cnt / total_cnt * 100
print(f'Novelty: {novelty:.3f}%')
summary['novelty'] = novelty
# ----------------- Recovery ---------------- #
recovered_inputs = set()
all_inputs = set()
for obj in tqdm(data):
if not obj['valid']:
obj['recovered'] = False
continue
key = obj['true_molecule'] + '_' + obj['fragments']
try:
true_mol = Chem.MolFromSmiles(obj['true_molecule'])
Chem.RemoveStereochemistry(true_mol)
true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol))
except:
true_mol = Chem.MolFromSmiles(obj['true_molecule'], sanitize=False)
Chem.RemoveStereochemistry(true_mol)
true_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(true_mol, sanitize=False))
pred_mol = Chem.MolFromSmiles(obj['pred_molecule'])
Chem.RemoveStereochemistry(pred_mol)
pred_mol_smi = Chem.MolToSmiles(Chem.RemoveHs(pred_mol))
recovered = true_mol_smi == pred_mol_smi
obj['recovered'] = recovered
if recovered:
recovered_inputs.add(key)
all_inputs.add(key)
recovery = len(recovered_inputs) / len(all_inputs) * 100
print(f'Recovery: {recovery:.3f}%')
summary['recovery'] = recovery
# ----------------- PAINS Filter ---------------- #
def check_pains(mol, pains):
for pain in pains:
if mol.HasSubstructMatch(pain):
return False
return True
with open(pains_smarts_loc, 'r') as f:
pains_smarts = [Chem.MolFromSmarts(line[0], mergeHs=True) for line in csv.reader(f)]
pains_smarts = set(pains_smarts)
passed_pains_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['passed_pains'] = False
continue
pred_mol = Chem.MolFromSmiles(obj['pred_molecule'])
passed_pains = check_pains(pred_mol, pains_smarts)
obj['passed_pains'] = passed_pains
passed_pains_cnt += passed_pains
total_cnt += 1
pains_score = passed_pains_cnt / total_cnt * 100
print(f'Passed PAINS: {pains_score:.3f}%')
summary['pains'] = pains_score
# ----------------- RA Filter ---------------- #
def check_ring_filter(linker):
check = True
ssr = Chem.GetSymmSSSR(linker)
for ring in ssr:
for atom_idx in ring:
for bond in linker.GetAtomWithIdx(atom_idx).GetBonds():
if bond.GetBondType() == 2 and bond.GetBeginAtomIdx() in ring and bond.GetEndAtomIdx() in ring:
check = False
return check
passed_ring_filter_cnt = 0
total_cnt = 0
for obj in tqdm(data):
if not obj['valid']:
obj['passed_ring_filter'] = False
continue
pred_linker = Chem.MolFromSmiles(obj['pred_linker'], sanitize=False)
try:
passed_ring_filter = check_ring_filter(pred_linker)
except:
obj['passed_ring_filter'] = False
continue
obj['passed_ring_filter'] = passed_ring_filter
passed_ring_filter_cnt += passed_ring_filter
total_cnt += 1
ra_score = passed_ring_filter_cnt / total_cnt * 100
print(f'Passed Ring Filter: {ra_score:.3f}%')
summary['ra'] = ra_score
# ---------------------------- Saving -------------------------------- #
out_path = gen_smi_file[:-3] + 'csv'
table = pd.DataFrame(data)
table.to_csv(out_path, index=False)
summary_path = gen_smi_file[:-4] + '_summary.csv'
summary_table = pd.DataFrame([summary])
summary_table.to_csv(summary_path, index=False)
# ----------------------- RMSD --------------------- #
sdf_path = gen_smi_file[:-3] + 'sdf'
pred_mol_3d = Chem.SDMolSupplier(sdf_path)
if method == 'diffusion' and data_set == 'ZINC':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/zinc_final_test_smiles.smi'
true_mol_path = 'datasets/zinc_final_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'CASF':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/casf_final_test_smiles.smi'
true_mol_path = 'datasets/casf_final_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'GEOM':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/geom_multifrag_test_smiles.smi'
true_mol_path = 'datasets/geom_multifrag_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
elif method == 'diffusion' and data_set == 'MOAD':
# Use SMILES of test set generated for molecules processed by OpenBabel
# (for consistency with other evaluation metrics)
# Because SMILES produced by our model are also based on OpenBabel
true_smi_path = 'datasets/MOAD_test_smiles.smi'
true_mol_path = 'datasets/MOAD_test_molecules.sdf'
true_smi = pd.read_csv(true_smi_path, sep=' ', names=['mol', 'frag']).mol.values
true_mol_3d = Chem.SDMolSupplier(true_mol_path)
true_smi2mol3d = dict(zip(true_smi, true_mol_3d))
else:
raise NotImplementedError
def find_exit(mol, num_frag):
neighbors = []
for atom_idx in range(num_frag, mol.GetNumAtoms()):
N = mol.GetAtoms()[atom_idx].GetNeighbors()
for n in N:
if n.GetIdx() < num_frag:
neighbors.append(n.GetIdx())
return neighbors
rmsd_list = []
for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)):
obj['rmsd'] = None
if not obj['recovered']:
continue
true = true_smi2mol3d[obj['true_molecule']]
Chem.RemoveStereochemistry(true)
true = Chem.RemoveHs(true)
Chem.RemoveStereochemistry(pred)
pred = Chem.RemoveHs(pred)
G1 = frag_utils.topology_from_rdkit(pred)
G2 = frag_utils.topology_from_rdkit(true)
GM = isomorphism.GraphMatcher(G1, G2)
flag = GM.is_isomorphic()
frag_size = Chem.MolFromSmiles(obj['fragments']).GetNumAtoms()
# exits = find_exit(pred, frag_size)
# if flag and len(exits) == 2:
if flag:
error = Chem.rdMolAlign.GetBestRMS(pred, true)
# try:
# error = Chem.rdMolAlign.GetBestRMS(pred, true)
# except:
# set_trace()
num_linker = pred.GetNumAtoms() - frag_size
num_atoms = pred.GetNumAtoms()
error *= np.sqrt(num_atoms / num_linker) # only count rmsd on linker
rmsd_list.append(error)
obj['rmsd'] = error
rmsd_score = np.mean(rmsd_list)
print(f'Mean RMSD: {rmsd_score:.3f}')
summary['rmsd'] = rmsd_score
# ----------------------------- SC-RDKit -------------------------- #
def calc_sc_rdkit_full_mol(gen_mol, ref_mol):
try:
_ = rdMolAlign.GetO3A(gen_mol, ref_mol).Align()
sc_score = calc_SC_RDKit.calc_SC_RDKit_score(gen_mol, ref_mol)
return sc_score
except:
return -0.5
sc_rdkit_list = []
for i, (obj, pred) in tqdm(enumerate(zip(data, pred_mol_3d)), total=len(data)):
obj['sc_rdkit'] = None
if not obj['valid']:
continue
true = true_smi2mol3d[obj['true_molecule']]
score = calc_sc_rdkit_full_mol(pred, true)
sc_rdkit_list.append(score)
obj['sc_rdkit'] = score
sc_rdkit_list = np.array(sc_rdkit_list)
sc_rdkit_7 = (sc_rdkit_list > 0.7).sum() / len(sc_rdkit_list) * 100
sc_rdkit_8 = (sc_rdkit_list > 0.8).sum() / len(sc_rdkit_list) * 100
sc_rdkit_9 = (sc_rdkit_list > 0.9).sum() / len(sc_rdkit_list) * 100
sc_rdkit_mean = np.mean(sc_rdkit_list)
print(f'SC_RDKit > 0.7: {sc_rdkit_7:3f}%')
print(f'SC_RDKit > 0.8: {sc_rdkit_8:3f}%')
print(f'SC_RDKit > 0.9: {sc_rdkit_9:3f}%')
print(f'Mean SC_RDKit: {sc_rdkit_mean}')
summary['sc_rdkit_7'] = sc_rdkit_7
summary['sc_rdkit_8'] = sc_rdkit_8
summary['sc_rdkit_9'] = sc_rdkit_9
summary['sc_rdkit_mean'] = sc_rdkit_mean
# ---------------------------- Saving -------------------------------- #
out_path = gen_smi_file[:-3] + 'csv'
table = pd.DataFrame(data)
table.to_csv(out_path, index=False)
summary_path = gen_smi_file[:-4] + '_summary.csv'
summary_table = pd.DataFrame([summary])
summary_table.to_csv(summary_path, index=False)