Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
ACTIVATIONS = { | |
'relu': nn.ReLU, | |
'silu': nn.SiLU | |
} | |
def FCBlock(in_dim, hidden_dim, out_dim, layers, dropout, activation='relu'): | |
activation = ACTIVATIONS[activation] | |
assert layers >= 2 | |
sequential = [nn.Linear(in_dim, hidden_dim), activation(), nn.Dropout(dropout)] | |
for i in range(layers - 2): | |
sequential += [nn.Linear(hidden_dim, hidden_dim), activation(), nn.Dropout(dropout)] | |
sequential += [nn.Linear(hidden_dim, out_dim)] | |
return nn.Sequential(*sequential) | |
class GaussianSmearing(torch.nn.Module): | |
# used to embed the edge distances | |
def __init__(self, start=0.0, stop=5.0, num_gaussians=50): | |
super().__init__() | |
offset = torch.linspace(start, stop, num_gaussians) | |
self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 | |
self.register_buffer('offset', offset) | |
def forward(self, dist): | |
dist = dist.view(-1, 1) - self.offset.view(1, -1) | |
return torch.exp(self.coeff * torch.pow(dist, 2)) | |
class AtomEncoder(torch.nn.Module): | |
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_dim=0): | |
""" | |
Parameters | |
---------- | |
emb_dim | |
feature_dims | |
first element of feature_dims tuple is a list with the length of each categorical feature, | |
and the second is the number of scalar features | |
sigma_embed_dim | |
lm_embedding_dim | |
""" | |
# | |
super(AtomEncoder, self).__init__() | |
self.atom_embedding_list = torch.nn.ModuleList() | |
self.num_categorical_features = len(feature_dims[0]) | |
self.additional_features_dim = feature_dims[1] + sigma_embed_dim + lm_embedding_dim | |
for i, dim in enumerate(feature_dims[0]): | |
emb = torch.nn.Embedding(dim, emb_dim) | |
torch.nn.init.xavier_uniform_(emb.weight.data) | |
self.atom_embedding_list.append(emb) | |
if self.additional_features_dim > 0: | |
self.additional_features_embedder = torch.nn.Linear(self.additional_features_dim + emb_dim, emb_dim) | |
def forward(self, x): | |
x_embedding = 0 | |
assert x.shape[1] == self.num_categorical_features + self.additional_features_dim | |
for i in range(self.num_categorical_features): | |
x_embedding += self.atom_embedding_list[i](x[:, i].long()) | |
if self.additional_features_dim > 0: | |
x_embedding = self.additional_features_embedder(torch.cat([x_embedding, x[:, self.num_categorical_features:]], axis=1)) | |
return x_embedding | |
class OldAtomEncoder(torch.nn.Module): | |
def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type=None): | |
""" | |
Parameters | |
---------- | |
emb_dim | |
feature_dims | |
first element of feature_dims tuple is a list with the length of each categorical feature, | |
and the second is the number of scalar features | |
sigma_embed_dim | |
lm_embedding_type | |
""" | |
# | |
super(OldAtomEncoder, self).__init__() | |
self.atom_embedding_list = torch.nn.ModuleList() | |
self.num_categorical_features = len(feature_dims[0]) | |
self.num_scalar_features = feature_dims[1] + sigma_embed_dim | |
self.lm_embedding_type = lm_embedding_type | |
for i, dim in enumerate(feature_dims[0]): | |
emb = torch.nn.Embedding(dim, emb_dim) | |
torch.nn.init.xavier_uniform_(emb.weight.data) | |
self.atom_embedding_list.append(emb) | |
if self.num_scalar_features > 0: | |
self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim) | |
if self.lm_embedding_type is not None: | |
if self.lm_embedding_type == 'esm': | |
self.lm_embedding_dim = 1280 | |
else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type) | |
self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim) | |
def forward(self, x): | |
x_embedding = 0 | |
if self.lm_embedding_type is not None: | |
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim | |
else: | |
assert x.shape[1] == self.num_categorical_features + self.num_scalar_features | |
for i in range(self.num_categorical_features): | |
x_embedding += self.atom_embedding_list[i](x[:, i].long()) | |
if self.num_scalar_features > 0: | |
x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features]) | |
if self.lm_embedding_type is not None: | |
x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1)) | |
return x_embedding | |