Spaces:
Sleeping
Sleeping
import logging | |
import os | |
from typing import Tuple, Union, List | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from e3nn import o3 | |
from e3nn.nn import BatchNorm | |
from e3nn.o3 import TensorProduct, Linear | |
from torch_scatter import scatter, scatter_mean | |
from models.layers import FCBlock | |
def get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars): | |
if use_second_order_repr: | |
irrep_seq = [ | |
f'{ns}x0e', | |
f'{ns}x0e + {nv}x1o + {nv}x2e', | |
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o', | |
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {nv if reduce_pseudoscalars else ns}x0o' | |
] | |
else: | |
irrep_seq = [ | |
f'{ns}x0e', | |
f'{ns}x0e + {nv}x1o', | |
f'{ns}x0e + {nv}x1o + {nv}x1e', | |
f'{ns}x0e + {nv}x1o + {nv}x1e + {nv if reduce_pseudoscalars else ns}x0o' | |
] | |
return irrep_seq | |
def irrep_to_size(irrep): | |
irreps = irrep.split(' + ') | |
size = 0 | |
for ir in irreps: | |
m, (l, p) = ir.split('x') | |
size += int(m) * (2 * int(l) + 1) | |
return size | |
class FasterTensorProduct(torch.nn.Module): | |
# Implemented by Bowen Jing | |
def __init__(self, in_irreps, sh_irreps, out_irreps, **kwargs): | |
super().__init__() | |
#for ir in in_irreps: | |
# m, (l, p) = ir | |
# assert l in [0, 1], "Higher order in irreps are not supported" | |
#for ir in out_irreps: | |
# m, (l, p) = ir | |
# assert l in [0, 1], "Higher order out irreps are not supported" | |
assert o3.Irreps(sh_irreps) == o3.Irreps('1x0e+1x1o'), "sh_irreps don't look like 1st order spherical harmonics" | |
self.in_irreps = o3.Irreps(in_irreps) | |
self.out_irreps = o3.Irreps(out_irreps) | |
in_muls = {'0e': 0, '1o': 0, '1e': 0, '0o': 0} | |
out_muls = {'0e': 0, '1o': 0, '1e': 0, '0o': 0} | |
for (m, ir) in self.in_irreps: in_muls[str(ir)] = m | |
for (m, ir) in self.out_irreps: out_muls[str(ir)] = m | |
self.weight_shapes = { | |
'0e': (in_muls['0e'] + in_muls['1o'], out_muls['0e']), | |
'1o': (in_muls['0e'] + in_muls['1o'] + in_muls['1e'], out_muls['1o']), | |
'1e': (in_muls['1o'] + in_muls['1e'] + in_muls['0o'], out_muls['1e']), | |
'0o': (in_muls['1e'] + in_muls['0o'], out_muls['0o']) | |
} | |
self.weight_numel = sum(a * b for (a, b) in self.weight_shapes.values()) | |
def forward(self, in_, sh, weight): | |
in_dict, out_dict = {}, {'0e': [], '1o': [], '1e': [], '0o': []} | |
for (m, ir), sl in zip(self.in_irreps, self.in_irreps.slices()): | |
in_dict[str(ir)] = in_[..., sl] | |
if ir[0] == 1: in_dict[str(ir)] = in_dict[str(ir)].reshape(list(in_dict[str(ir)].shape)[:-1] + [-1, 3]) | |
sh_0e, sh_1o = sh[..., 0], sh[..., 1:] | |
if '0e' in in_dict: | |
out_dict['0e'].append(in_dict['0e'] * sh_0e.unsqueeze(-1)) | |
out_dict['1o'].append(in_dict['0e'].unsqueeze(-1) * sh_1o.unsqueeze(-2)) | |
if '1o' in in_dict: | |
out_dict['0e'].append((in_dict['1o'] * sh_1o.unsqueeze(-2)).sum(-1) / np.sqrt(3)) | |
out_dict['1o'].append(in_dict['1o'] * sh_0e.unsqueeze(-1).unsqueeze(-1)) | |
out_dict['1e'].append(torch.linalg.cross(in_dict['1o'], sh_1o.unsqueeze(-2), dim=-1) / np.sqrt(2)) | |
if '1e' in in_dict: | |
out_dict['1o'].append(torch.linalg.cross(in_dict['1e'], sh_1o.unsqueeze(-2), dim=-1) / np.sqrt(2)) | |
out_dict['1e'].append(in_dict['1e'] * sh_0e.unsqueeze(-1).unsqueeze(-1)) | |
out_dict['0o'].append((in_dict['1e'] * sh_1o.unsqueeze(-2)).sum(-1) / np.sqrt(3)) | |
if '0o' in in_dict: | |
out_dict['1e'].append(in_dict['0o'].unsqueeze(-1) * sh_1o.unsqueeze(-2)) | |
out_dict['0o'].append(in_dict['0o'] * sh_0e.unsqueeze(-1)) | |
weight_dict = {} | |
start = 0 | |
for key in self.weight_shapes: | |
in_, out = self.weight_shapes[key] | |
weight_dict[key] = weight[..., start:start + in_ * out].reshape( | |
list(weight.shape)[:-1] + [in_, out]) / np.sqrt(in_) | |
start += in_ * out | |
if out_dict['0e']: | |
out_dict['0e'] = torch.cat(out_dict['0e'], dim=-1) | |
out_dict['0e'] = torch.matmul(out_dict['0e'].unsqueeze(-2), weight_dict['0e']).squeeze(-2) | |
if out_dict['1o']: | |
out_dict['1o'] = torch.cat(out_dict['1o'], dim=-2) | |
out_dict['1o'] = (out_dict['1o'].unsqueeze(-2) * weight_dict['1o'].unsqueeze(-1)).sum(-3) | |
out_dict['1o'] = out_dict['1o'].reshape(list(out_dict['1o'].shape)[:-2] + [-1]) | |
if out_dict['1e']: | |
out_dict['1e'] = torch.cat(out_dict['1e'], dim=-2) | |
out_dict['1e'] = (out_dict['1e'].unsqueeze(-2) * weight_dict['1e'].unsqueeze(-1)).sum(-3) | |
out_dict['1e'] = out_dict['1e'].reshape(list(out_dict['1e'].shape)[:-2] + [-1]) | |
if out_dict['0o']: | |
out_dict['0o'] = torch.cat(out_dict['0o'], dim=-1) | |
# out_dict['0o'] = (out_dict['0o'].unsqueeze(-1) * weight_dict['0o']).sum(-2) | |
out_dict['0o'] = torch.matmul(out_dict['0o'].unsqueeze(-2), weight_dict['0o']).squeeze(-2) | |
out = [] | |
for _, ir in self.out_irreps: | |
out.append(out_dict[str(ir)]) | |
return torch.cat(out, dim=-1) | |
def tp_scatter_simple(tp, fc_layer, node_attr, edge_index, edge_attr, edge_sh, | |
out_nodes=None, reduce='mean', edge_weight=1.0): | |
""" | |
Perform TensorProduct + scatter operation, aka graph convolution. | |
This function is only for edge_groups == 1. For multiple edge groups, and for larger graphs, | |
use tp_scatter_multigroup instead. | |
""" | |
assert isinstance(edge_attr, torch.Tensor), \ | |
"This function is only for a single edge group, so edge_attr must be a tensor and not a list." | |
_device = node_attr.device | |
_dtype = node_attr.dtype | |
edge_src, edge_dst = edge_index | |
out_irreps = fc_layer(edge_attr).to(_device).to(_dtype) | |
out_irreps.mul_(edge_weight) | |
tp = tp(node_attr[edge_dst], edge_sh, out_irreps) | |
out_nodes = out_nodes or node_attr.shape[0] | |
out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce) | |
return out | |
def tp_scatter_multigroup(tp: o3.TensorProduct, fc_layer: Union[nn.Module, nn.ModuleList], | |
node_attr: torch.Tensor, edge_index: torch.Tensor, | |
edge_attr_groups: List[torch.Tensor], edge_sh: torch.Tensor, | |
out_nodes=None, reduce='mean', edge_weight=1.0): | |
""" | |
Perform TensorProduct + scatter operation, aka graph convolution. | |
To keep the peak memory usage reasonably low, this function does not concatenate the edge_attr_groups. | |
Rather, we sum the output of the tensor product for each edge group, and then divide by the number of edges | |
Parameters | |
---------- | |
tp: o3.TensorProduct | |
fc_layer: nn.Module, or nn.ModuleList | |
If a list, must be the same length as edge_attr_groups | |
node_attr: torch.Tensor | |
edge_index: torch.Tensor of shape (2, num_edges) | |
Indicates the source and destination nodes of each edge | |
edge_attr_groups: List[torch.Tensor] | |
List of tensors, with shape (X_i, num_edge_attributes). Each tensor is a different group of edge attributes | |
X may be different for each tensor, although sum(X_i) must be equal to edge_index.shape[1] | |
edge_sh: torch.Tensor | |
Spherical harmonics for the edges (see o3.spherical_harmonics) | |
out_nodes: | |
Number of output nodes | |
reduce: str | |
'mean' or 'sum'. Reduce function for scatter. | |
edge_weight : float or torch.Tensor | |
Edge weights. If a tensor, must be the same shape as `edge_index` | |
Returns | |
------- | |
torch.Tensor | |
Result of the graph convolution | |
""" | |
assert isinstance(edge_attr_groups, list), "This function is only for a list of edge groups" | |
assert reduce in {"mean", "sum"}, "Only 'mean' and 'sum' are supported for reduce" | |
# It would be possible to support mul/min/max but that would require more work and more code, | |
# so only going to do it if it's needed. | |
_device = node_attr.device | |
_dtype = node_attr.dtype | |
edge_src, edge_dst = edge_index | |
edge_attr_lengths = [_edge_attr.shape[0] for _edge_attr in edge_attr_groups] | |
total_rows = sum(edge_attr_lengths) | |
assert total_rows == edge_index.shape[1], "Sum of edge_attr_groups must be equal to edge_index.shape[1]" | |
num_edge_groups = len(edge_attr_groups) | |
edge_weight_is_indexable = hasattr(edge_weight, '__getitem__') | |
out_nodes = out_nodes or node_attr.shape[0] | |
total_output_dim = sum([x.dim for x in tp.irreps_out]) | |
final_out = torch.zeros((out_nodes, total_output_dim), device=_device, dtype=_dtype) | |
div_factors = torch.zeros(out_nodes, device=_device, dtype=_dtype) | |
cur_start = 0 | |
for ii in range(num_edge_groups): | |
cur_length = edge_attr_lengths[ii] | |
cur_end = cur_start + cur_length | |
cur_edge_range = slice(cur_start, cur_end) | |
cur_edge_src, cur_edge_dst = edge_src[cur_edge_range], edge_dst[cur_edge_range] | |
cur_fc = fc_layer[ii] if isinstance(fc_layer, nn.ModuleList) else fc_layer | |
cur_out_irreps = cur_fc(edge_attr_groups[ii]) | |
if edge_weight_is_indexable: | |
cur_out_irreps.mul_(edge_weight[cur_edge_range]) | |
else: | |
cur_out_irreps.mul_(edge_weight) | |
summand = tp(node_attr[cur_edge_dst, :], edge_sh[cur_edge_range, :], cur_out_irreps) | |
# We take a simple sum, and then add up the count of edges which contribute, | |
# so that we can take the mean later. | |
final_out += scatter(summand, cur_edge_src, dim=0, dim_size=out_nodes, reduce="sum") | |
div_factors += torch.bincount(cur_edge_src, minlength=out_nodes) | |
cur_start = cur_end | |
del cur_out_irreps, summand | |
if reduce == 'mean': | |
div_factors = torch.clamp(div_factors, torch.finfo(_dtype).eps) | |
final_out = final_out / div_factors[:, None] | |
return final_out | |
class TensorProductConvLayer(torch.nn.Module): | |
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0, | |
hidden_features=None, faster=False, edge_groups=1, tp_weights_layers=2, activation='relu', depthwise=False): | |
super(TensorProductConvLayer, self).__init__() | |
self.in_irreps = in_irreps | |
self.out_irreps = out_irreps | |
self.sh_irreps = sh_irreps | |
self.residual = residual | |
self.edge_groups = edge_groups | |
self.out_size = irrep_to_size(out_irreps) | |
self.depthwise = depthwise | |
if hidden_features is None: | |
hidden_features = n_edge_features | |
if depthwise: | |
in_irreps = o3.Irreps(in_irreps) | |
sh_irreps = o3.Irreps(sh_irreps) | |
out_irreps = o3.Irreps(out_irreps) | |
irreps_mid = [] | |
instructions = [] | |
for i, (mul, ir_in) in enumerate(in_irreps): | |
for j, (_, ir_edge) in enumerate(sh_irreps): | |
for ir_out in ir_in * ir_edge: | |
if ir_out in out_irreps: | |
k = len(irreps_mid) | |
irreps_mid.append((mul, ir_out)) | |
instructions.append((i, j, k, "uvu", True)) | |
# We sort the output irreps of the tensor product so that we can simplify them | |
# when they are provided to the second o3.Linear | |
irreps_mid = o3.Irreps(irreps_mid) | |
irreps_mid, p, _ = irreps_mid.sort() | |
# Permute the output indexes of the instructions to match the sorted irreps: | |
instructions = [ | |
(i_in1, i_in2, p[i_out], mode, train) | |
for i_in1, i_in2, i_out, mode, train in instructions | |
] | |
self.tp = TensorProduct( | |
in_irreps, | |
sh_irreps, | |
irreps_mid, | |
instructions, | |
shared_weights=False, | |
internal_weights=False, | |
) | |
self.linear_2 = Linear( | |
# irreps_mid has uncoallesed irreps because of the uvu instructions, | |
# but there's no reason to treat them seperately for the Linear | |
# Note that normalization of o3.Linear changes if irreps are coallesed | |
# (likely for the better) | |
irreps_in=irreps_mid.simplify(), | |
irreps_out=out_irreps, | |
internal_weights=True, | |
shared_weights=True, | |
) | |
else: | |
if faster: | |
print("Faster Tensor Product") | |
self.tp = FasterTensorProduct(in_irreps, sh_irreps, out_irreps) | |
else: | |
self.tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False) | |
if edge_groups == 1: | |
self.fc = FCBlock(n_edge_features, hidden_features, self.tp.weight_numel, tp_weights_layers, dropout, activation) | |
else: | |
self.fc = [FCBlock(n_edge_features, hidden_features, self.tp.weight_numel, tp_weights_layers, dropout, activation) for _ in range(edge_groups)] | |
self.fc = nn.ModuleList(self.fc) | |
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None | |
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean', edge_weight=1.0): | |
if edge_index.shape[1] == 0 and node_attr.shape[0] == 0: | |
raise ValueError("No edges and no nodes") | |
_dtype = node_attr.dtype | |
if edge_index.shape[1] == 0: | |
out = torch.zeros((node_attr.shape[0], self.out_size), dtype=_dtype, device=node_attr.device) | |
else: | |
if self.edge_groups == 1: | |
out = tp_scatter_simple(self.tp, self.fc, node_attr, edge_index, edge_attr, edge_sh, | |
out_nodes, reduce, edge_weight) | |
else: | |
out = tp_scatter_multigroup(self.tp, self.fc, node_attr, edge_index, edge_attr, edge_sh, | |
out_nodes, reduce, edge_weight) | |
if self.depthwise: | |
out = self.linear_2(out) | |
if self.batch_norm: | |
out = self.batch_norm(out) | |
if self.residual: | |
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1])) | |
out = out + padded | |
out = out.to(_dtype) | |
return out | |
class OldTensorProductConvLayer(torch.nn.Module): | |
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0, | |
hidden_features=None): | |
super(OldTensorProductConvLayer, self).__init__() | |
self.in_irreps = in_irreps | |
self.out_irreps = out_irreps | |
self.sh_irreps = sh_irreps | |
self.residual = residual | |
if hidden_features is None: | |
hidden_features = n_edge_features | |
self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False) | |
self.fc = nn.Sequential( | |
nn.Linear(n_edge_features, hidden_features), | |
nn.ReLU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_features, tp.weight_numel) | |
) | |
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None | |
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean', edge_weight=1.0): | |
# Break up the edge_attr into chunks to limit the maximum memory usage | |
edge_chunk_size = 100_000 | |
num_edges = edge_attr.shape[0] | |
num_chunks = (num_edges // edge_chunk_size) if num_edges % edge_chunk_size == 0 \ | |
else (num_edges // edge_chunk_size) + 1 | |
edge_ranges = np.array_split(np.arange(num_edges), num_chunks) | |
edge_attr_groups = [edge_attr[cur_range] for cur_range in edge_ranges] | |
out = tp_scatter_multigroup(self.tp, self.fc, node_attr, edge_index, edge_attr_groups, edge_sh, | |
out_nodes, reduce, edge_weight) | |
if self.residual: | |
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1])) | |
out = out + padded | |
if self.batch_norm: | |
out = self.batch_norm(out) | |
out = out.to(node_attr.dtype) | |
return out | |