Spaces:
Sleeping
Sleeping
import networkx as nx | |
import numpy as np | |
import torch, copy | |
from scipy.spatial.transform import Rotation as R | |
from torch_geometric.utils import to_networkx | |
from torch_geometric.data import Data | |
from utils.geometry import rigid_transform_Kabsch_independent_torch, axis_angle_to_matrix | |
""" | |
Preprocessing and computation for torsional updates to conformers | |
""" | |
def get_transformation_mask(pyg_data): | |
G = to_networkx(pyg_data.to_homogeneous(), to_undirected=False) | |
to_rotate = [] | |
edges = pyg_data['ligand', 'ligand'].edge_index.T.numpy() | |
for i in range(0, edges.shape[0], 2): | |
assert edges[i, 0] == edges[i+1, 1] | |
G2 = G.to_undirected() | |
G2.remove_edge(*edges[i]) | |
if not nx.is_connected(G2): | |
l = list(sorted(nx.connected_components(G2), key=len)[0]) | |
if len(l) > 1: | |
if edges[i, 0] in l: | |
to_rotate.append([]) | |
to_rotate.append(l) | |
else: | |
to_rotate.append(l) | |
to_rotate.append([]) | |
continue | |
to_rotate.append([]) | |
to_rotate.append([]) | |
mask_edges = np.asarray([0 if len(l) == 0 else 1 for l in to_rotate], dtype=bool) | |
mask_rotate = np.zeros((np.sum(mask_edges), len(G.nodes())), dtype=bool) | |
idx = 0 | |
for i in range(min(edges.shape[0], len(G.edges()))): | |
if mask_edges[i]: | |
mask_rotate[idx][np.asarray(to_rotate[i], dtype=int)] = True | |
idx += 1 | |
return mask_edges, mask_rotate | |
def modify_conformer_torsion_angles(pos, edge_index, mask_rotate, torsion_updates, as_numpy=False): | |
pos = copy.deepcopy(pos) | |
if type(pos) != np.ndarray: pos = pos.cpu().numpy() | |
if type(mask_rotate) == list: mask_rotate = mask_rotate[0] | |
for idx_edge, e in enumerate(edge_index.cpu().numpy()): | |
if torsion_updates[idx_edge] == 0: | |
continue | |
u, v = e[0], e[1] | |
# check if need to reverse the edge, v should be connected to the part that gets rotated | |
if mask_rotate[idx_edge, u] or (not mask_rotate[idx_edge, v]): | |
print("mask rotate exception") | |
#assert not mask_rotate[idx_edge, u] | |
#assert mask_rotate[idx_edge, v] | |
rot_vec = pos[u] - pos[v] # convention: positive rotation if pointing inwards | |
rot_vec = rot_vec * torsion_updates[idx_edge] / np.linalg.norm(rot_vec) # idx_edge! | |
rot_mat = R.from_rotvec(rot_vec).as_matrix() | |
pos[mask_rotate[idx_edge]] = (pos[mask_rotate[idx_edge]] - pos[v]) @ rot_mat.T + pos[v] | |
if not as_numpy: pos = torch.from_numpy(pos.astype(np.float32)) | |
return pos | |
def modify_conformer_torsion_angles_batch(pos, edge_index, mask_rotate, torsion_updates): | |
pos = pos + 0 | |
for idx_edge, e in enumerate(edge_index): | |
u, v = e[0], e[1] | |
# check if need to reverse the edge, v should be connected to the part that gets rotated | |
assert not mask_rotate[idx_edge, u] | |
assert mask_rotate[idx_edge, v] | |
rot_vec = pos[:, u] - pos[:, v] # convention: positive rotation if pointing inwards | |
rot_mat = axis_angle_to_matrix( | |
rot_vec / torch.linalg.norm(rot_vec, dim=-1, keepdims=True) * torsion_updates[:, idx_edge:idx_edge + 1]) | |
pos[:, mask_rotate[idx_edge]] = torch.bmm(pos[:, mask_rotate[idx_edge]] - pos[:, v:v + 1], torch.transpose(rot_mat, 1, 2)) + pos[:, v:v + 1] | |
return pos | |
def perturb_batch(data, torsion_updates, split=False, return_updates=False): | |
if type(data) is Data: | |
return modify_conformer_torsion_angles(data.pos, | |
data.edge_index.T[data.edge_mask], | |
data.mask_rotate, torsion_updates) | |
pos_new = [] if split else copy.deepcopy(data.pos) | |
edges_of_interest = data.edge_index.T[data.edge_mask] | |
idx_node = 0 | |
idx_edges = 0 | |
torsion_update_list = [] | |
for i, mask_rotate in enumerate(data.mask_rotate): | |
pos = data.pos[idx_node:idx_node + mask_rotate.shape[1]] | |
edges = edges_of_interest[idx_edges:idx_edges + mask_rotate.shape[0]] - idx_node | |
torsion_update = torsion_updates[idx_edges:idx_edges + mask_rotate.shape[0]] | |
torsion_update_list.append(torsion_update) | |
pos_new_ = modify_conformer_torsion_angles(pos, edges, mask_rotate, torsion_update) | |
if split: | |
pos_new.append(pos_new_) | |
else: | |
pos_new[idx_node:idx_node + mask_rotate.shape[1]] = pos_new_ | |
idx_node += mask_rotate.shape[1] | |
idx_edges += mask_rotate.shape[0] | |
if return_updates: | |
return pos_new, torsion_update_list | |
return pos_new | |
def get_dihedrals(data_list): | |
edge_index, edge_mask = data_list[0]['ligand', 'ligand'].edge_index, data_list[0]['ligand'].edge_mask | |
edge_list = [[] for _ in range(torch.max(edge_index) + 1)] | |
for p in edge_index.T: | |
edge_list[p[0]].append(p[1]) | |
rot_bonds = [(p[0], p[1]) for i, p in enumerate(edge_index.T) if edge_mask[i]] | |
dihedral = [] | |
for a, b in rot_bonds: | |
c = edge_list[a][0] if edge_list[a][0] != b else edge_list[a][1] | |
d = edge_list[b][0] if edge_list[b][0] != a else edge_list[b][1] | |
dihedral.append((c.item(), a.item(), b.item(), d.item())) | |
# dihedral_numpy = np.asarray(dihedral) | |
# print(dihedral_numpy.shape) | |
dihedral = torch.tensor(dihedral) | |
return dihedral | |