GenFBDD / utils /utils.py
libokj's picture
Initial commit GenFBDD
9439b9b
import os
import subprocess
import warnings
from datetime import datetime
from typing import List
import numpy
import numpy as np
import torch
import yaml
from rdkit import Chem
from rdkit.Chem import RemoveHs, MolToPDBFile
from torch import nn, Tensor
from torch_geometric.nn.data_parallel import DataParallel
from torch_geometric.utils import degree, subgraph
from models.aa_model import AAModel
from models.cg_model import CGModel
from models.old_aa_model import AAOldModel
from models.old_cg_model import CGOldModel
from utils.diffusion_utils import get_timestep_embedding
def get_obrmsd(mol1_path, mol2_path, cache_name=None):
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f') if cache_name is None else cache_name
os.makedirs(".openbabel_cache", exist_ok=True)
if not isinstance(mol1_path, str):
MolToPDBFile(mol1_path, '.openbabel_cache/obrmsd_mol1_cache.pdb')
mol1_path = '.openbabel_cache/obrmsd_mol1_cache.pdb'
if not isinstance(mol2_path, str):
MolToPDBFile(mol2_path, '.openbabel_cache/obrmsd_mol2_cache.pdb')
mol2_path = '.openbabel_cache/obrmsd_mol2_cache.pdb'
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return_code = subprocess.run(f"obrms {mol1_path} {mol2_path} > .openbabel_cache/obrmsd_{cache_name}.rmsd",
shell=True)
print(return_code)
obrms_output = read_strings_from_txt(f".openbabel_cache/obrmsd_{cache_name}.rmsd")
rmsds = [line.split(" ")[-1] for line in obrms_output]
return np.array(rmsds, dtype=np.float)
def remove_all_hs(mol):
params = Chem.RemoveHsParameters()
params.removeAndTrackIsotopes = True
params.removeDefiningBondStereo = True
params.removeDegreeZero = True
params.removeDummyNeighbors = True
params.removeHigherDegrees = True
params.removeHydrides = True
params.removeInSGroups = True
params.removeIsotopes = True
params.removeMapped = True
params.removeNonimplicit = True
params.removeOnlyHNeighbors = True
params.removeWithQuery = True
params.removeWithWedgedBond = True
return RemoveHs(mol, params)
def read_strings_from_txt(path):
# every line will be one element of the returned list
with open(path) as file:
lines = file.readlines()
return [line.rstrip() for line in lines]
def unbatch(src, batch: Tensor, dim: int = 0) -> List[Tensor]:
r"""Splits :obj:`src` according to a :obj:`batch` vector along dimension
:obj:`dim`.
Args:
src (Tensor): The source tensor.
batch (LongTensor): The batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
entry in :obj:`src` to a specific example. Must be ordered.
dim (int, optional): The dimension along which to split the :obj:`src`
tensor. (default: :obj:`0`)
:rtype: :class:`List[Tensor]`
"""
sizes = degree(batch, dtype=torch.long).tolist()
if isinstance(src, numpy.ndarray):
return np.split(src, np.array(sizes).cumsum()[:-1], axis=dim)
else:
return src.split(sizes, dim)
def unbatch_edge_index(edge_index: Tensor, batch: Tensor) -> List[Tensor]:
r"""Splits the :obj:`edge_index` according to a :obj:`batch` vector.
Args:
edge_index (Tensor): The edge_index tensor. Must be ordered.
batch (LongTensor): The batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. Must be ordered.
:rtype: :class:`List[Tensor]`
"""
deg = degree(batch, dtype=torch.int64)
ptr = torch.cat([deg.new_zeros(1), deg.cumsum(dim=0)[:-1]], dim=0)
edge_batch = batch[edge_index[0]]
edge_index = edge_index - ptr[edge_batch]
sizes = degree(edge_batch, dtype=torch.int64).cpu().tolist()
return edge_index.split(sizes, dim=1)
def unbatch_edge_attributes(edge_attributes, edge_index: Tensor, batch: Tensor) -> List[Tensor]:
edge_batch = batch[edge_index[0]]
sizes = degree(edge_batch, dtype=torch.int64).cpu().tolist()
return edge_attributes.split(sizes, dim=0)
def save_yaml_file(path, content):
assert isinstance(path, str), f'path must be a string, got {path} which is a {type(path)}'
content = yaml.dump(data=content)
if '/' in path and os.path.dirname(path) and not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
with open(path, 'w') as f:
f.write(content)
def unfreeze_layer(model):
for name, child in (model.named_children()):
#print(name, child.parameters())
for param in child.parameters():
param.requires_grad = True
def get_optimizer_and_scheduler(args, model, scheduler_mode='min', step=0, optimizer=None):
if args.scheduler == 'layer_linear_warmup':
if step == 0:
for name, child in (model.named_children()):
if name.find('batch_norm') == -1:
for name, param in child.named_parameters():
if name.find('batch_norm') == -1:
param.requires_grad = False
for l in [model.center_edge_embedding, model.final_conv, model.tr_final_layer, model.rot_final_layer,
model.final_edge_embedding, model.final_tp_tor, model.tor_bond_conv, model.tor_final_layer]:
unfreeze_layer(l)
elif 0 < step <= args.num_conv_layers:
unfreeze_layer(model.conv_layers[-step])
elif step == args.num_conv_layers + 1:
for l in [model.lig_node_embedding, model.lig_edge_embedding, model.rec_node_embedding, model.rec_edge_embedding,
model.rec_sigma_embedding, model.cross_edge_embedding, model.rec_emb_layers, model.lig_emb_layers]:
unfreeze_layer(l)
if step == 0 or args.scheduler == 'layer_linear_warmup':
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.w_decay)
scheduler_plateau = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=scheduler_mode, factor=0.7, patience=args.scheduler_patience, min_lr=args.lr / 100)
if args.scheduler == 'plateau':
scheduler = scheduler_plateau
elif args.scheduler == 'linear_warmup' or args.scheduler == 'layer_linear_warmup':
if (args.scheduler == 'linear_warmup' and step < 1) or \
(args.scheduler == 'layer_linear_warmup' and step <= args.num_conv_layers + 1):
scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=args.lr_start_factor, end_factor=1.0,
total_iters=args.warmup_dur)
else:
scheduler = scheduler_plateau
else:
print('No scheduler')
scheduler = None
return optimizer, scheduler
def get_model(args, device, t_to_sigma, no_parallel=False, confidence_mode=False, old=False):
timestep_emb_func = get_timestep_embedding(
embedding_type=args.embedding_type if 'embedding_type' in args else 'sinusoidal',
embedding_dim=args.sigma_embed_dim,
embedding_scale=args.embedding_scale if 'embedding_type' in args else 10000)
if old:
if 'all_atoms' in args and args.all_atoms:
model_class = AAOldModel
else:
model_class = CGOldModel
lm_embedding_type = None
if args.esm_embeddings_path is not None: lm_embedding_type = 'esm'
model = model_class(t_to_sigma=t_to_sigma,
device=device,
no_torsion=args.no_torsion,
timestep_emb_func=timestep_emb_func,
num_conv_layers=args.num_conv_layers,
lig_max_radius=args.max_radius,
scale_by_sigma=args.scale_by_sigma,
sigma_embed_dim=args.sigma_embed_dim,
norm_by_sigma='norm_by_sigma' in args and args.norm_by_sigma,
ns=args.ns, nv=args.nv,
distance_embed_dim=args.distance_embed_dim,
cross_distance_embed_dim=args.cross_distance_embed_dim,
batch_norm=not args.no_batch_norm,
dropout=args.dropout,
use_second_order_repr=args.use_second_order_repr,
cross_max_distance=args.cross_max_distance,
dynamic_max_cross=args.dynamic_max_cross,
smooth_edges=args.smooth_edges if "smooth_edges" in args else False,
odd_parity=args.odd_parity if "odd_parity" in args else False,
lm_embedding_type=lm_embedding_type,
confidence_mode=confidence_mode,
affinity_prediction=args.affinity_prediction if 'affinity_prediction' in args else False,
parallel=args.parallel if "parallel" in args else 1,
num_confidence_outputs=len(
args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
args.rmsd_classification_cutoff, list) else 1,
parallel_aggregators=args.parallel_aggregators if "parallel_aggregators" in args else "",
fixed_center_conv=not args.not_fixed_center_conv if "not_fixed_center_conv" in args else False,
no_aminoacid_identities=args.no_aminoacid_identities if "no_aminoacid_identities" in args else False,
include_miscellaneous_atoms=args.include_miscellaneous_atoms if hasattr(args, 'include_miscellaneous_atoms') else False,
use_old_atom_encoder=args.use_old_atom_encoder if hasattr(args, 'use_old_atom_encoder') else True)
else:
if 'all_atoms' in args and args.all_atoms:
model_class = AAModel
else:
model_class = CGModel
lm_embedding_type = None
if ('moad_esm_embeddings_path' in args and args.moad_esm_embeddings_path is not None) or \
('pdbbind_esm_embeddings_path' in args and args.pdbbind_esm_embeddings_path is not None) or \
('pdbsidechain_esm_embeddings_path' in args and args.pdbsidechain_esm_embeddings_path is not None) or \
('esm_embeddings_path' in args and args.esm_embeddings_path is not None):
lm_embedding_type = 'precomputed'
if 'esm_embeddings_model' in args and args.esm_embeddings_model is not None: lm_embedding_type = args.esm_embeddings_model
model = model_class(t_to_sigma=t_to_sigma,
device=device,
no_torsion=args.no_torsion,
timestep_emb_func=timestep_emb_func,
num_conv_layers=args.num_conv_layers,
lig_max_radius=args.max_radius,
scale_by_sigma=args.scale_by_sigma,
sigma_embed_dim=args.sigma_embed_dim,
norm_by_sigma='norm_by_sigma' in args and args.norm_by_sigma,
ns=args.ns, nv=args.nv,
distance_embed_dim=args.distance_embed_dim,
cross_distance_embed_dim=args.cross_distance_embed_dim,
batch_norm=not args.no_batch_norm,
dropout=args.dropout,
use_second_order_repr=args.use_second_order_repr,
cross_max_distance=args.cross_max_distance,
dynamic_max_cross=args.dynamic_max_cross,
smooth_edges=args.smooth_edges if "smooth_edges" in args else False,
odd_parity=args.odd_parity if "odd_parity" in args else False,
lm_embedding_type=lm_embedding_type,
confidence_mode=confidence_mode,
affinity_prediction=args.affinity_prediction if 'affinity_prediction' in args else False,
parallel=args.parallel if "parallel" in args else 1,
num_confidence_outputs=len(
args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
args.rmsd_classification_cutoff, list) else 1,
atom_num_confidence_outputs=len(
args.atom_rmsd_classification_cutoff) + 1 if 'atom_rmsd_classification_cutoff' in args and isinstance(
args.atom_rmsd_classification_cutoff, list) else 1,
parallel_aggregators=args.parallel_aggregators if "parallel_aggregators" in args else "",
fixed_center_conv=not args.not_fixed_center_conv if "not_fixed_center_conv" in args else False,
no_aminoacid_identities=args.no_aminoacid_identities if "no_aminoacid_identities" in args else False,
include_miscellaneous_atoms=args.include_miscellaneous_atoms if hasattr(args, 'include_miscellaneous_atoms') else False,
sh_lmax=args.sh_lmax if 'sh_lmax' in args else 2,
differentiate_convolutions=not args.no_differentiate_convolutions if "no_differentiate_convolutions" in args else True,
tp_weights_layers=args.tp_weights_layers if "tp_weights_layers" in args else 2,
num_prot_emb_layers=args.num_prot_emb_layers if "num_prot_emb_layers" in args else 0,
reduce_pseudoscalars=args.reduce_pseudoscalars if "reduce_pseudoscalars" in args else False,
embed_also_ligand=args.embed_also_ligand if "embed_also_ligand" in args else False,
atom_confidence=args.atom_confidence_loss_weight > 0.0 if "atom_confidence_loss_weight" in args else False,
sidechain_pred=(hasattr(args, 'sidechain_loss_weight') and args.sidechain_loss_weight > 0) or
(hasattr(args, 'backbone_loss_weight') and args.backbone_loss_weight > 0),
depthwise_convolution=args.depthwise_convolution if hasattr(args, 'depthwise_convolution') else False)
if device.type == 'cuda' and not no_parallel and ('dataset' not in args or not args.dataset == 'torsional'):
model = DataParallel(model)
model.to(device)
return model
import signal
from contextlib import contextmanager
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class ExponentialMovingAverage:
""" from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
Maintains (exponential) moving average of a set of parameters. """
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def state_dict(self):
return dict(decay=self.decay, num_updates=self.num_updates,
shadow_params=self.shadow_params)
def load_state_dict(self, state_dict, device):
self.decay = state_dict['decay']
self.num_updates = state_dict['num_updates']
self.shadow_params = [tensor.to(device) for tensor in state_dict['shadow_params']]
def crop_beyond(complex_graph, cutoff, all_atoms):
ligand_pos = complex_graph['ligand'].pos
receptor_pos = complex_graph['receptor'].pos
residues_to_keep = torch.any(torch.sum((ligand_pos.unsqueeze(0) - receptor_pos.unsqueeze(1)) ** 2, -1) < cutoff ** 2, dim=1)
if all_atoms:
#print(complex_graph['atom'].x.shape, complex_graph['atom'].pos.shape, complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index.shape)
atom_to_res_mapping = complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index[1]
atoms_to_keep = residues_to_keep[atom_to_res_mapping]
rec_remapper = (torch.cumsum(residues_to_keep.long(), dim=0) - 1)
atom_to_res_new_mapping = rec_remapper[atom_to_res_mapping][atoms_to_keep]
atom_res_edge_index = torch.stack([torch.arange(len(atom_to_res_new_mapping), device=atom_to_res_new_mapping.device), atom_to_res_new_mapping])
complex_graph['receptor'].pos = complex_graph['receptor'].pos[residues_to_keep]
complex_graph['receptor'].x = complex_graph['receptor'].x[residues_to_keep]
complex_graph['receptor'].side_chain_vecs = complex_graph['receptor'].side_chain_vecs[residues_to_keep]
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = \
subgraph(residues_to_keep, complex_graph['receptor', 'rec_contact', 'receptor'].edge_index, relabel_nodes=True)[0]
if all_atoms:
complex_graph['atom'].x = complex_graph['atom'].x[atoms_to_keep]
complex_graph['atom'].pos = complex_graph['atom'].pos[atoms_to_keep]
complex_graph['atom', 'atom_contact', 'atom'].edge_index = subgraph(atoms_to_keep, complex_graph['atom', 'atom_contact', 'atom'].edge_index, relabel_nodes=True)[0]
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
#print("cropped", 1-torch.mean(residues_to_keep.float()), 'residues', 1-torch.mean(atoms_to_keep.float()), 'atoms')