import os import subprocess import numpy as np from rdkit.Chem import AllChem, RemoveHs, RemoveAllHs from datasets.process_mols import write_mol_with_coords, read_molecule import re from utils.utils import remove_all_hs def read_gnina_metrics(gnina_sdf_path): with open(gnina_sdf_path, 'r') as f: pattern = re.compile(r'> <(.*?)>\n(.*?)\n') content = f.read() matches = pattern.findall(content) metrics = {k: v for k, v in matches} return metrics def read_gnina_score(gnina_sdf_path): with open(gnina_sdf_path, 'r') as f: pattern = re.compile(r'> \n(.*?)\n') content = f.read() matches = pattern.findall(content) return float(matches[0]) def invert_permutation(p): """Return an array s with which np.array_equal(arr[p][s], arr) is True. The array_like argument p must be some permutation of 0, 1, ..., len(p)-1. """ p = np.asanyarray(p) # in case p is a tuple, etc. s = np.empty_like(p) s[p] = np.arange(p.size) return s def get_gnina_poses(args, mol, pos, orig_center, name, folder, gnina_path, thread_id=0): #folder = "data/MOAD_new_test_processed" if args.split == 'test' else "data/MOAD_new_val_processed" out_dir = args.out_dir if hasattr(args, 'out_dir') else args.inference_out_dir rec_path = os.path.join(folder, name[:6] + '_protein_chain_removed.pdb') pred_lig_path = os.path.join(out_dir, f'pred_{name}_tid{thread_id}_lig.sdf') if not os.path.exists(os.path.dirname(pred_lig_path)): os.mkdir(os.path.dirname(pred_lig_path)) print(f'Ligand path {pred_lig_path}') write_mol_with_coords(mol, pos + orig_center, pred_lig_path) gnina_pred_path = os.path.join(out_dir, f'gnina_{name}_tid{thread_id}_lig.sdf') gnina_logs_dir = os.path.join(out_dir, "gnina_logs") with open(os.path.join(gnina_logs_dir, f'{name}'), "w+") as f: if args.gnina_full_dock: return_code = subprocess.run( f'{gnina_path} -r {rec_path} -l "{pred_lig_path}" --autobox_ligand "{pred_lig_path}" -o "{gnina_pred_path}" --no_gpu --autobox_add {args.gnina_autobox_add}', shell=True, stdout=f, stderr=f) else: return_code = subprocess.run( f'{gnina_path} --receptor {rec_path} --ligand "{pred_lig_path}" --minimize -o "{gnina_pred_path}"', shell=True, stdout=f, stderr=f) # print(f'gnina return code: {return_code}') try: gnina_mol = RemoveAllHs(read_molecule(gnina_pred_path, remove_hs=True, sanitize=True)) gnina_minimized_ligand_pos = np.array(gnina_mol.GetConformer(0).GetPositions()) gnina_atoms = np.array([atom.GetSymbol() for atom in gnina_mol.GetAtoms()]) gnina_filter_Hs = np.where(gnina_atoms != 'H') gnina_ligand_pos = gnina_minimized_ligand_pos[gnina_filter_Hs] - orig_center try: gnina_score = read_gnina_score(gnina_pred_path) if gnina_score is None: gnina_score = 0 except Exception as e: print(f'Error reading gnina score: {e}') gnina_score = 0 except Exception as e: print(f'Error when running gnina with {name} to minimize energy') print('Error:', e) print('Using score model output pos instead.') gnina_ligand_pos = pos gnina_mol = RemoveAllHs(mol) gnina_score = 0 return gnina_ligand_pos, gnina_mol, gnina_score