from datetime import datetime from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.utils import formatdate, make_msgid from functools import cache import os from pathlib import Path import smtplib import sys import tempfile import pandas as pd from bokeh.models import NumberFormatter, BooleanFormatter, HTMLTemplateFormatter import gradio as gr import pytz import panel as pn import seaborn as sns from markdown import markdown from rdkit import Chem, RDConfig from rdkit.Chem import PandasTools, Crippen, Descriptors, rdMolDescriptors, Lipinski, rdmolops import requests from app import static sys.path.append(str(Path(RDConfig.RDContribDir) / 'SA_Score')) import sascorer def lipinski(mol): """ Lipinski's rules: Hydrogen bond donors <= 5 Hydrogen bond acceptors <= 10 Molecular weight <= 500 daltons logP <= 5 """ return ( Lipinski.NumHDonors(mol) <= 5 and Lipinski.NumHAcceptors(mol) <= 10 and Descriptors.MolWt(mol) <= 500 and Crippen.MolLogP(mol) <= 5 ) def reos(mol): """ Rapid Elimination Of Swill filter: Molecular weight between 200 and 500 LogP between -5.0 and +5.0 H-bond donor count between 0 and 5 H-bond acceptor count between 0 and 10 Formal charge between -2 and +2 Rotatable bond count between 0 and 8 Heavy atom count between 15 and 50 """ return ( 200 <= Descriptors.MolWt(mol) <= 500 and -5.0 <= Crippen.MolLogP(mol) <= 5.0 and 0 <= Lipinski.NumHDonors(mol) <= 5 and 0 <= Lipinski.NumHAcceptors(mol) <= 10 and -2 <= rdmolops.GetFormalCharge(mol) <= 2 and 0 <= rdMolDescriptors.CalcNumRotatableBonds(mol) <= 8 and 15 <= rdMolDescriptors.CalcNumHeavyAtoms(mol) <= 50 ) def ghose(mol): """ Ghose drug like filter: Molecular weight between 160 and 480 LogP between -0.4 and +5.6 Atom count between 20 and 70 Molar refractivity between 40 and 130 """ return ( 160 <= Descriptors.MolWt(mol) <= 480 and -0.4 <= Crippen.MolLogP(mol) <= 5.6 and 20 <= rdMolDescriptors.CalcNumAtoms(mol) <= 70 and 40 <= Crippen.MolMR(mol) <= 130 ) def veber(mol): """ The Veber filter is a rule of thumb filter for orally active drugs described in Veber et al., J Med Chem. 2002; 45(12): 2615-23.: Rotatable bonds <= 10 Topological polar surface area <= 140 """ return ( rdMolDescriptors.CalcNumRotatableBonds(mol) <= 10 and rdMolDescriptors.CalcTPSA(mol) <= 140 ) def rule_of_three(mol): """ Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).): Molecular weight <= 300 LogP <= 3 H-bond donor <= 3 H-bond acceptor count <= 3 Rotatable bond count <= 3 """ return ( Descriptors.MolWt(mol) <= 300 and Crippen.MolLogP(mol) <= 3 and Lipinski.NumHDonors(mol) <= 3 and Lipinski.NumHAcceptors(mol) <= 3 and rdMolDescriptors.CalcNumRotatableBonds(mol) <= 3 ) @cache def load_smarts_patterns(smarts_path): # Load the CSV file containing SMARTS patterns smarts_df = pd.read_csv(Path(smarts_path)) # Convert all SMARTS patterns to molecules smarts_mols = [Chem.MolFromSmarts(smarts) for smarts in smarts_df['smarts']] return smarts_mols def smarts_filter(mol, smarts_mols): for smarts_mol in smarts_mols: if smarts_mol is not None and mol.HasSubstructMatch(smarts_mol): return False return True def pains(mol): smarts_mols = load_smarts_patterns("data/filters/pains.csv") return smarts_filter(mol, smarts_mols) def mlsmr(mol): smarts_mols = load_smarts_patterns("data/filters/mlsmr.csv") return smarts_filter(mol, smarts_mols) def dundee(mol): smarts_mols = load_smarts_patterns("data/filters/dundee.csv") return smarts_filter(mol, smarts_mols) def glaxo(mol): smarts_mols = load_smarts_patterns("data/filters/glaxo.csv") return smarts_filter(mol, smarts_mols) def bms(mol): smarts_mols = load_smarts_patterns("data/filters/bms.csv") return smarts_filter(mol, smarts_mols) SCORE_MAP = { 'SAscore': sascorer.calculateScore, 'LogP': Crippen.MolLogP, 'Molecular Weight': Descriptors.MolWt, 'Number of Atoms': rdMolDescriptors.CalcNumAtoms, 'Number of Heavy Atoms': rdMolDescriptors.CalcNumHeavyAtoms, 'Molar Refractivity': Crippen.MolMR, 'H-Bond Donor Count': Lipinski.NumHDonors, 'H-Bond Acceptor Count': Lipinski.NumHAcceptors, 'Rotatable Bond Count': rdMolDescriptors.CalcNumRotatableBonds, 'Topological Polar Surface Area': rdMolDescriptors.CalcTPSA, } FILTER_MAP = { # TODO support number_of_violations 'REOS': reos, "Lipinski's Rule of Five": lipinski, 'Ghose': ghose, 'Rule of Three': rule_of_three, 'Veber': veber, 'PAINS': pains, 'MLSMR': mlsmr, 'Dundee': dundee, 'Glaxo': glaxo, 'BMS': bms, } def validate_columns(df, mandatory_cols): missing_cols = [col for col in mandatory_cols if col not in df.columns] if missing_cols: error_message = (f"The following mandatory columns are missing " f"in the uploaded dataset: {str(mandatory_cols).strip('[]')}.") raise ValueError(error_message) else: return def get_timezone_by_ip(ip, session): try: data = session.get(f'https://worldtimeapi.org/api/ip/{ip}').json() return data['timezone'] except Exception: return 'UTC' def ts_to_str(timestamp, timezone): # Create a timezone-aware datetime object from the UNIX timestamp dt = datetime.fromtimestamp(timestamp, pytz.utc) # Convert the timezone-aware datetime object to the target timezone target_timezone = pytz.timezone(timezone) localized_dt = dt.astimezone(target_timezone) # Format the datetime object to the specified string format return localized_dt.strftime('%Y-%m-%d %H:%M:%S (%Z%z)') def send_email(job_info): if job_info.get('email'): try: email_info = job_info.copy() email_serv = os.getenv('EMAIL_SERV') email_port = os.getenv('EMAIL_PORT') email_addr = os.getenv('EMAIL_ADDR') email_pass = os.getenv('EMAIL_PASS') email_form = os.getenv('EMAIL_FORM') email_subj = os.getenv('EMAIL_SUBJ') for key, value in email_info.items(): if key.endswith("time") and value: email_info[key] = ts_to_str(value, get_timezone_by_ip(email_info['ip'])) server = smtplib.SMTP(email_serv, int(email_port)) # server.starttls() server.login(email_addr, email_pass) msg = MIMEMultipart("alternative") msg["From"] = email_addr msg["To"] = email_info['email'] msg["Subject"] = email_subj.format(**email_info) msg["Date"] = formatdate(localtime=True) msg["Message-ID"] = make_msgid() msg.attach(MIMEText(markdown(email_form.format(**email_info)), 'html')) msg.attach(MIMEText(email_form.format(**email_info), 'plain')) server.sendmail(email_addr, email_info['email'], msg.as_string()) server.quit() gr.Info('Email notification sent.') except Exception as e: gr.Warning('Failed to send email notification due to error: ' + str(e)) def read_molecule(path): if path.endswith('.pdb'): return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True) if path.endswith('.pdr'): return open(path, 'r').read() elif path.endswith('.mol'): return Chem.MolFromMolFile(path, sanitize=False, removeHs=True) elif path.endswith('.mol2'): return Chem.MolFromMol2File(path, sanitize=False, removeHs=True) elif path.endswith('.sdf'): return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0] raise Exception('Unknown file extension') def read_molecule_file(in_file, allowed_extentions): if isinstance(in_file, str): path = in_file else: path = in_file.name extension = path.split('.')[-1] if extension not in allowed_extentions: msg = static.INVALID_FORMAT_MSG.format(extension=extension) return None, None, msg try: mol = read_molecule(path) except Exception as e: e = str(e).replace('\'', '') msg = static.ERROR_FORMAT_MSG.format(message=e) return None, None, msg if extension in 'pdb': content = Chem.MolToPDBBlock(mol) elif extension in ['mol', 'mol2', 'sdf']: content = Chem.MolToMolBlock(mol, kekulize=False) extension = 'mol' else: raise NotImplementedError return content, extension, None def show_target(in_protein): molecule, extension, html = read_molecule_file(in_protein, allowed_extentions=['pdb']) if molecule is not None: html = static.TARGET_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension) return static.IFRAME_TEMPLATE.format(html=html) def show_complex(complex_path): protein_complex, extension, html = read_molecule_file(complex_path, allowed_extentions=['pdb']) if protein_complex is not None: html = static.COMPLEX_RENDERING_TEMPLATE.format(complex=protein_complex, fmt=extension) return static.IFRAME_TEMPLATE.format(html=html) # def create_complex_view_html( # complex_path, pocket_path_dict=None, # interactive_ligands=True, interactive_pockets=True # ): # """Generates HTML for complex visualization.""" # model_i = -1 # viewer_models = "" # if complex_path: # complex_data, extension, html = read_molecule_file(complex_path, allowed_extentions=['pdb']) # viewer_models += f'viewer.addModel(`{complex_data}`, "pdb");' # model_i += 1 # viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: false }}, proteinStyle);" # viewer_models += f"viewer.getModel({model_i}).setStyle({{ hetflag: true }}, ligandStyle);" # if interactive_ligands: # # return ligand residue info when the ligand is clicked # viewer_models += f""" # let selectedLigand = null; # viewer.getModel({model_i}).setClickable( # {{ hetflag: true, byres: true }}, # true, # function (_atom, _viewer, _event, _container) {{ # let currentLigand = {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }}; # # if (selectedLigand === currentLigand) {{ # // Deselect ligand # selectedLigand = null; # _viewer.setStyle( # {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }}, # ligandStyle # ); # console.log("Deselected Residue:", currentLigand); # window.parent.postMessage({{ # name: "ligand_selection", # data: {{ residue: currentLigand, add: false }} # }}, "*"); # }} else {{ # // Select ligand and deselect previous # if (selectedLigand) {{ # _viewer.setStyle( # {{ # resn: selectedLigand.resn, # chain: selectedLigand.chain, # resi: selectedLigand.resi # }}, # ligandStyle # ); # }} # selectedLigand = currentLigand; # _viewer.setStyle( # {{ resn: _atom.resn, chain: _atom.chain, resi: _atom.resi }}, # {{ stick: {{ color: "red", radius: 0.4}} }} # ); # console.log("Selected Residue:", currentLigand); # window.parent.postMessage({{ # name: "ligand_selection", # data: {{ residue: currentLigand, add: true }} # }}, "*"); # }} # _viewer.render(); # }} # ); # """ # if pocket_path_dict: # pocket_data_dict = {k: open(v, 'r').read() for k, v in pocket_path_dict.items()} # for pocket_name, pocket_data in pocket_data_dict.items(): # viewer_models += f'viewer.addModel(`{pocket_data}`, "pqr");' # model_i += 1 # viewer_models += f'viewer.getModel({model_i}).setStyle(pocketStyle);' # if interactive_pockets: # # return the pocket name when the pocket is clicked # viewer_models += f""" # let selectedPocket = null; # viewer.getModel({model_i}).setClickable( # {{ byres: true }}, # true, # function (_atom, _viewer, _event, _container) {{ # let currentPocket = "{pocket_name}"; # # if (selectedPocket == currentPocket) {{ # // Deselect pocket # selectedPocket = null; # _viewer.getModel({model_i}).setStyle( pocketStyle ); # console.log("Deselected Pocket:", currentPocket); # window.parent.postMessage({{ # name: "pocket_selection", # data: {{ pocket: currentPocket, add: false }} # }}, "*"); # }} else {{ # // Select pocket and deselect previous # if (selectedPocket) {{ # _viewer.getModel(selectedPocket).setStyle( pocketStyle ); # }} # selectedPocket = currentPocket; # _viewer.getModel({model_i}).setStyle( # {{ sphere: {{ color: "red", opacity: 0.9}} }} # ); # console.log("Selected Pocket:", currentPocket); # window.parent.postMessage({{ # name: "pocket_selection", # data: {{ pocket: currentPocket, add: true }} # }}, "*"); # }} # _viewer.render(); # }} # ); # """ # # html = static.COMPLEX_RENDERING_TEMPLATE.format(viewer_models=viewer_models) # return static.IFRAME_TEMPLATE.format(html=html) def create_result_table_html(summary_df, opts=(), progress=gr.Progress(track_tqdm=True)): html_df = summary_df.copy() column_aliases = { 'ID1': 'Compound ID', 'ID2': 'Target ID', 'X1': 'Compound SMILES', 'ligand_conf_path': 'Pose', 'output_path': 'Pose' } # drop any columns ending with '_path' hidden_cols = [col for col in html_df.columns if col.endswith('_path')] html_df.rename(columns=column_aliases, inplace=True) if 'Compound' in html_df.columns and 'Exclude Molecular Graph' not in opts: html_df['Compound'] = html_df['Compound'].apply(PandasTools.PrintAsImageString) else: html_df.drop(['Compound'], axis=1, inplace=True) # if 'Scaffold' in html_df.columns and 'Exclude Scaffold Graph' not in opts: # html_df['Scaffold'] = html_df['Scaffold'].parallel_apply( # lambda x: PandasTools.PrintAsImageString(x) if not pd.isna(x) else x) # else: # html_df.drop(['Scaffold'], axis=1, inplace=True) # html_df.index.name = 'Index' num_cols = html_df.select_dtypes('number').columns num_col_colors = sns.color_palette('husl', len(num_cols)) bool_cols = html_df.select_dtypes(bool).columns image_zoom_formatter = HTMLTemplateFormatter(template='