import math import numpy as np import torch import torch.nn.functional as F from torch import nn from scipy.stats import beta from utils.geometry import axis_angle_to_matrix, rigid_transform_Kabsch_3D_torch, rigid_transform_Kabsch_3D_torch_batch from utils.torsion import modify_conformer_torsion_angles, modify_conformer_torsion_angles_batch def sigmoid(t): return 1 / (1 + np.e**(-t)) def sigmoid_schedule(t, k=10, m=0.5): s = lambda t: sigmoid(k*(t-m)) return (s(t)-s(0))/(s(1)-s(0)) def t_to_sigma_individual(t, schedule_type, sigma_min, sigma_max, schedule_k=10, schedule_m=0.4): if schedule_type == "exponential": return sigma_min ** (1 - t) * sigma_max ** t elif schedule_type == 'sigmoid': return sigmoid_schedule(t, k=schedule_k, m=schedule_m) * (sigma_max - sigma_min) + sigma_min def t_to_sigma(t_tr, t_rot, t_tor, args): tr_sigma = args.tr_sigma_min ** (1-t_tr) * args.tr_sigma_max ** t_tr rot_sigma = args.rot_sigma_min ** (1-t_rot) * args.rot_sigma_max ** t_rot tor_sigma = args.tor_sigma_min ** (1-t_tor) * args.tor_sigma_max ** t_tor return tr_sigma, rot_sigma, tor_sigma def modify_conformer(data, tr_update, rot_update, torsion_updates, pivot=None): lig_center = torch.mean(data['ligand'].pos, dim=0, keepdim=True) rot_mat = axis_angle_to_matrix(rot_update.squeeze()) rigid_new_pos = (data['ligand'].pos - lig_center) @ rot_mat.T + tr_update + lig_center if torsion_updates is not None: flexible_new_pos = modify_conformer_torsion_angles(rigid_new_pos, data['ligand', 'ligand'].edge_index.T[data['ligand'].edge_mask], data['ligand'].mask_rotate if isinstance(data['ligand'].mask_rotate, np.ndarray) else data['ligand'].mask_rotate[0], torsion_updates).to(rigid_new_pos.device) if pivot is None: R, t = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, rigid_new_pos.T) aligned_flexible_pos = flexible_new_pos @ R.T + t.T else: R1, t1 = rigid_transform_Kabsch_3D_torch(pivot.T, rigid_new_pos.T) R2, t2 = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, pivot.T) aligned_flexible_pos = (flexible_new_pos @ R2.T + t2.T) @ R1.T + t1.T data['ligand'].pos = aligned_flexible_pos else: data['ligand'].pos = rigid_new_pos return data def modify_conformer_batch(orig_pos, data, tr_update, rot_update, torsion_updates, mask_rotate): B = data.num_graphs N, M, R = data['ligand'].num_nodes // B, data['ligand', 'ligand'].num_edges // B, data['ligand'].edge_mask.sum().item() // B pos, edge_index, edge_mask = orig_pos.reshape(B, N, 3) + 0, data['ligand', 'ligand'].edge_index[:, :M], data['ligand'].edge_mask[:M] torsion_updates = torsion_updates.reshape(B, -1) if torsion_updates is not None else None lig_center = torch.mean(pos, dim=1, keepdim=True) rot_mat = axis_angle_to_matrix(rot_update) rigid_new_pos = torch.bmm(pos - lig_center, rot_mat.permute(0, 2, 1)) + tr_update.unsqueeze(1) + lig_center if torsion_updates is not None: flexible_new_pos = modify_conformer_torsion_angles_batch(rigid_new_pos, edge_index.T[edge_mask], mask_rotate, torsion_updates) R, t = rigid_transform_Kabsch_3D_torch_batch(flexible_new_pos, rigid_new_pos) aligned_flexible_pos = torch.bmm(flexible_new_pos, R.transpose(1, 2)) + t.transpose(1, 2) final_pos = aligned_flexible_pos.reshape(-1, 3) else: final_pos = rigid_new_pos.reshape(-1, 3) return final_pos def modify_conformer_coordinates(pos, tr_update, rot_update, torsion_updates, edge_mask, mask_rotate, edge_index): # Made this function which does the same as modify_conformer because passing a graph would require # creating a new heterograph for reach graph when unbatching a batch of graphs lig_center = torch.mean(pos, dim=0, keepdim=True) rot_mat = axis_angle_to_matrix(rot_update.squeeze()) rigid_new_pos = (pos - lig_center) @ rot_mat.T + tr_update + lig_center if torsion_updates is not None: flexible_new_pos = modify_conformer_torsion_angles(rigid_new_pos,edge_index.T[edge_mask],mask_rotate \ if isinstance(mask_rotate, np.ndarray) else mask_rotate[0], torsion_updates).to(rigid_new_pos.device) R, t = rigid_transform_Kabsch_3D_torch(flexible_new_pos.T, rigid_new_pos.T) aligned_flexible_pos = flexible_new_pos @ R.T + t.T return aligned_flexible_pos else: return rigid_new_pos def sinusoidal_embedding(timesteps, embedding_dim, max_positions=10000): """ from https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(max_positions) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = F.pad(emb, (0, 1), mode='constant') assert emb.shape == (timesteps.shape[0], embedding_dim) return emb class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels. from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/models/layerspp.py#L32 """ def __init__(self, embedding_size=256, scale=1.0): super().__init__() self.W = nn.Parameter(torch.randn(embedding_size//2) * scale, requires_grad=False) def forward(self, x): x_proj = x[:, None] * self.W[None, :] * 2 * np.pi emb = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return emb def get_timestep_embedding(embedding_type, embedding_dim, embedding_scale=10000): if embedding_type == 'sinusoidal': emb_func = (lambda x : sinusoidal_embedding(embedding_scale * x, embedding_dim)) elif embedding_type == 'fourier': emb_func = GaussianFourierProjection(embedding_size=embedding_dim, scale=embedding_scale) else: raise NotImplemented return emb_func def get_t_schedule(sigma_schedule, inference_steps, inf_sched_alpha=1, inf_sched_beta=1, t_max=1): if sigma_schedule == 'expbeta': lin_max = beta.cdf(t_max, a=inf_sched_alpha, b=inf_sched_beta) c = np.linspace(lin_max, 0, inference_steps + 1)[:-1] return beta.ppf(c, a=inf_sched_alpha, b=inf_sched_beta) raise Exception() def set_time(complex_graphs, t, t_tr, t_rot, t_tor, batchsize, all_atoms, device, include_miscellaneous_atoms=False): complex_graphs['ligand'].node_t = { 'tr': t_tr * torch.ones(complex_graphs['ligand'].num_nodes).to(device), 'rot': t_rot * torch.ones(complex_graphs['ligand'].num_nodes).to(device), 'tor': t_tor * torch.ones(complex_graphs['ligand'].num_nodes).to(device)} complex_graphs['receptor'].node_t = { 'tr': t_tr * torch.ones(complex_graphs['receptor'].num_nodes).to(device), 'rot': t_rot * torch.ones(complex_graphs['receptor'].num_nodes).to(device), 'tor': t_tor * torch.ones(complex_graphs['receptor'].num_nodes).to(device)} complex_graphs.complex_t = {'tr': t_tr * torch.ones(batchsize).to(device), 'rot': t_rot * torch.ones(batchsize).to(device), 'tor': t_tor * torch.ones(batchsize).to(device)} if all_atoms: complex_graphs['atom'].node_t = { 'tr': t_tr * torch.ones(complex_graphs['atom'].num_nodes).to(device), 'rot': t_rot * torch.ones(complex_graphs['atom'].num_nodes).to(device), 'tor': t_tor * torch.ones(complex_graphs['atom'].num_nodes).to(device)} if include_miscellaneous_atoms and not all_atoms: complex_graphs['misc_atom'].node_t = { 'tr': t_tr * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device), 'rot': t_rot * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device), 'tor': t_tor * torch.ones(complex_graphs['misc_atom'].num_nodes).to(device)}