import os import numpy as np import torch from scipy.spatial.transform import Rotation MIN_EPS, MAX_EPS, N_EPS = 0.0005, 4, 2000 X_N = 2000 """ Preprocessing for the SO(3) sampling and score computations, truncated infinite series are computed and then cached to memory, therefore the precomputation is only run the first time the repository is run on a machine """ omegas = np.linspace(0, np.pi, X_N + 1)[1:] def _compose(r1, r2): # R1 @ R2 but for Euler vecs return Rotation.from_matrix(Rotation.from_rotvec(r1).as_matrix() @ Rotation.from_rotvec(r2).as_matrix()).as_rotvec() def _expansion(omega, eps, L=2000): # the summation term only l_vec = np.arange(L).reshape(-1, 1) p = ((2 * l_vec + 1) * np.exp(-l_vec * (l_vec + 1) * eps ** 2 / 2) * np.sin(omega * (l_vec + 1 / 2)) / np.sin(omega / 2)).sum(0) return p def _density(expansion, omega, marginal=True): # if marginal, density over [0, pi], else over SO(3) if marginal: return expansion * (1 - np.cos(omega)) / np.pi else: return expansion / 8 / np.pi ** 2 # the constant factor doesn't affect any actual calculations though def _score(exp, omega, eps, L=2000): # score of density over SO(3) l_vec = np.arange(L).reshape(-1, 1) hi = np.sin((l_vec + 1 / 2) * omega) dhi = (l_vec + 1 / 2) * np.cos((l_vec + 1 / 2) * omega) lo = np.sin(omega / 2) dlo = 1 / 2 * np.cos(omega / 2) dSigma = ((2 * l_vec + 1) * np.exp(-l_vec * (l_vec + 1) * eps**2 / 2) * (lo * dhi - hi * dlo) / lo ** 2).sum(0) return dSigma / exp if os.path.exists('resources/precomputed/.so3_omegas_array4.npy'): _omegas_array = np.load('resources/precomputed/.so3_omegas_array4.npy') _cdf_vals = np.load('resources/precomputed/.so3_cdf_vals4.npy') _score_norms = np.load('resources/precomputed/.so3_score_norms4.npy') _exp_score_norms = np.load('resources/precomputed/.so3_exp_score_norms4.npy') else: _eps_array = 10 ** np.linspace(np.log10(MIN_EPS), np.log10(MAX_EPS), N_EPS) _omegas_array = np.linspace(0, np.pi, X_N + 1)[1:] _exp_vals = np.asarray([_expansion(_omegas_array, eps) for eps in _eps_array]) _pdf_vals = np.asarray([_density(_exp, _omegas_array, marginal=True) for _exp in _exp_vals]) _cdf_vals = np.asarray([_pdf.cumsum() / X_N * np.pi for _pdf in _pdf_vals]) _score_norms = np.asarray([_score(_exp_vals[i], _omegas_array, _eps_array[i]) for i in range(len(_eps_array))]) _exp_score_norms = np.sqrt(np.sum(_score_norms**2 * _pdf_vals, axis=1) / np.sum(_pdf_vals, axis=1) / np.pi) np.save('resources/precomputed/.so3_omegas_array4.npy', _omegas_array) np.save('resources/precomputed/.so3_cdf_vals4.npy', _cdf_vals) np.save('resources/precomputed/.so3_score_norms4.npy', _score_norms) np.save('resources/precomputed/.so3_exp_score_norms4.npy', _exp_score_norms) def sample(eps): eps_idx = (np.log10(eps) - np.log10(MIN_EPS)) / (np.log10(MAX_EPS) - np.log10(MIN_EPS)) * N_EPS eps_idx = np.clip(np.around(eps_idx).astype(int), a_min=0, a_max=N_EPS - 1) x = np.random.rand() return np.interp(x, _cdf_vals[eps_idx], _omegas_array) def sample_vec(eps): x = np.random.randn(3) x /= np.linalg.norm(x) return x * sample(eps) def score_vec(eps, vec): eps_idx = (np.log10(eps) - np.log10(MIN_EPS)) / (np.log10(MAX_EPS) - np.log10(MIN_EPS)) * N_EPS eps_idx = np.clip(np.around(eps_idx).astype(int), a_min=0, a_max=N_EPS - 1) om = np.linalg.norm(vec) return np.interp(om, _omegas_array, _score_norms[eps_idx]) * vec / om def score_norm(eps): eps = eps.numpy() eps_idx = (np.log10(eps) - np.log10(MIN_EPS)) / (np.log10(MAX_EPS) - np.log10(MIN_EPS)) * N_EPS eps_idx = np.clip(np.around(eps_idx).astype(int), a_min=0, a_max=N_EPS-1) return torch.from_numpy(_exp_score_norms[eps_idx]).float()