import numpy as np import tqdm import os """ Preprocessing for the SO(2)/torus sampling and score computations, truncated infinite series are computed and then cached to memory, therefore the precomputation is only run the first time the repository is run on a machine """ def p(x, sigma, N=10): p_ = 0 for i in tqdm.trange(-N, N + 1): p_ += np.exp(-(x + 2 * np.pi * i) ** 2 / 2 / sigma ** 2) return p_ def grad(x, sigma, N=10): p_ = 0 for i in tqdm.trange(-N, N + 1): p_ += (x + 2 * np.pi * i) / sigma ** 2 * np.exp(-(x + 2 * np.pi * i) ** 2 / 2 / sigma ** 2) return p_ X_MIN, X_N = 1e-5, 5000 # relative to pi SIGMA_MIN, SIGMA_MAX, SIGMA_N = 3e-3, 2, 5000 # relative to pi x = 10 ** np.linspace(np.log10(X_MIN), 0, X_N + 1) * np.pi sigma = 10 ** np.linspace(np.log10(SIGMA_MIN), np.log10(SIGMA_MAX), SIGMA_N + 1) * np.pi if os.path.exists('resources/precomputed/.p.npy'): p_ = np.load('resources/precomputed/.p.npy') score_ = np.load('resources/precomputed/.score.npy') else: p_ = p(x, sigma[:, None], N=100) np.save('resources/precomputed/.p.npy', p_) eps = np.finfo(p_.dtype).eps score_ = grad(x, sigma[:, None], N=100) / (p_ + eps) np.save('.score.npy', score_) def score(x, sigma): x = (x + np.pi) % (2 * np.pi) - np.pi sign = np.sign(x) x = np.log(np.abs(x) / np.pi) x = (x - np.log(X_MIN)) / (0 - np.log(X_MIN)) * X_N x = np.round(np.clip(x, 0, X_N)).astype(int) sigma = np.log(sigma / np.pi) sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) return -sign * score_[sigma, x] def p(x, sigma): x = (x + np.pi) % (2 * np.pi) - np.pi x = np.log(np.abs(x) / np.pi) x = (x - np.log(X_MIN)) / (0 - np.log(X_MIN)) * X_N x = np.round(np.clip(x, 0, X_N)).astype(int) sigma = np.log(sigma / np.pi) sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) return p_[sigma, x] def sample(sigma): out = sigma * np.random.randn(*sigma.shape) out = (out + np.pi) % (2 * np.pi) - np.pi return out score_norm_ = score( sample(sigma[None].repeat(10000, 0).flatten()), sigma[None].repeat(10000, 0).flatten() ).reshape(10000, -1) score_norm_ = (score_norm_ ** 2).mean(0) def score_norm(sigma): sigma = np.log(sigma / np.pi) sigma = (sigma - np.log(SIGMA_MIN)) / (np.log(SIGMA_MAX) - np.log(SIGMA_MIN)) * SIGMA_N sigma = np.round(np.clip(sigma, 0, SIGMA_N)).astype(int) return score_norm_[sigma]