davanstrien's picture
davanstrien HF staff
Sort pipeline tags alphabetically
3003b62
raw
history blame
7.73 kB
import gradio as gr
import pandas as pd
from cachetools import TTLCache, cached
from huggingface_hub import list_models
from toolz import groupby
from tqdm.auto import tqdm
@cached(TTLCache(maxsize=10, ttl=60 * 60 * 3))
def get_all_models():
models = list(
tqdm(
iter(list_models(cardData=True, limit=None, sort="downloads", direction=-1))
)
)
models = [model for model in models if model is not None]
return [
model for model in models if model.downloads > 1
] # filter out models with 0 downloads
def has_base_model_info(model):
try:
if card_data := model.cardData:
if base_model := card_data.get("base_model"):
if isinstance(base_model, str):
return True
except AttributeError:
return False
return False
grouped_by_has_base_model_info = groupby(has_base_model_info, get_all_models())
def produce_summary():
return f"""{len(grouped_by_has_base_model_info.get(True)):,} models have base model info.
{len(grouped_by_has_base_model_info.get(False)):,} models don't have base model info.
Currently {round(len(grouped_by_has_base_model_info.get(True))/len(get_all_models())*100,2)}% of models have base model info."""
models_with_base_model_info = grouped_by_has_base_model_info.get(True)
base_models = [
model.cardData.get("base_model") for model in models_with_base_model_info
]
df = pd.DataFrame(
pd.DataFrame({"base_model": base_models}).value_counts()
).reset_index()
df_with_org = df.copy(deep=True)
pipeline_tags = [x.pipeline_tag for x in models_with_base_model_info]
# sort pipeline tags alphabetically
pipeline_tags = sorted(pipeline_tags)
unique_pipeline_tags = list(
{x.pipeline_tag for x in models_with_base_model_info if x.pipeline_tag is not None}
)
def parse_org(hub_id):
parts = hub_id.split("/")
if len(parts) == 2:
return parts[0] if parts[0] != "." else None
else:
return "huggingface"
def render_model_hub_link(hub_id):
link = f"https://huggingface.co/{hub_id}"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
df_with_org["org"] = df_with_org["base_model"].apply(parse_org)
df_with_org = df_with_org.dropna(subset=["org"])
grouped_by_base_model = groupby(
lambda x: x.cardData.get("base_model"), models_with_base_model_info
)
all_base_models = df["base_model"].to_list()
def get_grandchildren(base_model):
grandchildren = []
for model in tqdm(grouped_by_base_model[base_model]):
model_id = model.modelId
grandchildren.extend(grouped_by_base_model.get(model_id, []))
return grandchildren
def return_models_for_base_model(base_model):
models = grouped_by_base_model.get(base_model)
# sort models by downloads
models = sorted(models, key=lambda x: x.downloads, reverse=True)
results = ""
results += (
"## Models fine-tuned from"
f" [`{base_model}`](https://huggingface.co/{base_model}) \n\n"
)
results += f"`{base_model}` has {len(models)} children\n\n"
total_download_number = sum(model.downloads for model in models)
results += (
f"`{base_model}`'s children have been"
f" downloaded {total_download_number:,} times\n\n"
)
grandchildren = get_grandchildren(base_model)
number_of_grandchildren = len(grandchildren)
results += f"`{base_model}` has {number_of_grandchildren} grandchildren\n\n"
grandchildren_download_count = sum(model.downloads for model in grandchildren)
results += (
f"`{base_model}`'s grandchildren have been"
f" downloaded {grandchildren_download_count:,} times\n\n"
)
results += f"Including grandchildren, `{base_model}` has {number_of_grandchildren + len(models):,} descendants\n\n"
results += f"Including grandchildren, `{base_model}`'s descendants have been downloaded {grandchildren_download_count + total_download_number:,} times\n\n"
results += "### Children models \n\n"
for model in models:
url = f"https://huggingface.co/{model.modelId}"
results += (
f"- [{model.modelId}]({url}) | number of downloads {model.downloads:,}"
+ "\n\n"
)
return results
def return_base_model_popularity(pipeline=None):
df_with_pipeline_info = (
pd.DataFrame({"base_model": base_models, "pipeline": pipeline_tags})
.value_counts()
.reset_index()
)
if pipeline is not None:
df_with_pipeline_info = df_with_pipeline_info[
df_with_pipeline_info["pipeline"] == pipeline
]
keep_columns = ["base_model", "count"]
df_with_pipeline_info["base_model"] = df_with_pipeline_info["base_model"].apply(
render_model_hub_link
)
return df_with_pipeline_info[keep_columns].head(50)
def return_base_model_popularity_by_org(pipeline=None):
referenced_base_models = [
f"[`{model}`](https://huggingface.co/{model})" for model in base_models
]
df_with_pipeline_info = pd.DataFrame(
{"base_model": base_models, "pipeline": pipeline_tags}
)
df_with_pipeline_info["org"] = df_with_pipeline_info["base_model"].apply(parse_org)
df_with_pipeline_info["org"] = df_with_pipeline_info["org"].apply(
render_model_hub_link
)
df_with_pipeline_info = df_with_pipeline_info.dropna(subset=["org"])
df_with_org = df_with_pipeline_info.copy(deep=True)
if pipeline is not None:
df_with_org = df_with_pipeline_info[df_with_org["pipeline"] == pipeline]
df_with_org = df_with_org.drop(columns=["pipeline"])
df_with_org = pd.DataFrame(df_with_org.value_counts())
return pd.DataFrame(
df_with_org.groupby("org")["count"]
.sum()
.sort_values(ascending=False)
.reset_index()
.head(50)
)
with gr.Blocks() as demo:
gr.Markdown(
"# Base model explorer: explore the lineage of models on the &#129303; Hub"
)
gr.Markdown(
"""When sharing models to the Hub, it is possible to [specify a base model in the model card](https://huggingface.co/docs/hub/model-cards#specifying-a-base-model), i.e. that your model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased).
This Space allows you to find children's models for a given base model and view the popularity of models for fine-tuning.
You can also optionally filter by the task to see rankings for a particular machine learning task.
Don't forget to &#10084; if you like this space &#129303;"""
)
gr.Markdown(produce_summary())
gr.Markdown("## Find all models trained from a base model")
base_model = gr.Dropdown(all_base_models, label="Base Model")
results = gr.Markdown()
base_model.change(return_models_for_base_model, base_model, results)
gr.Markdown("## Base model rankings ")
dropdown = gr.Dropdown(
choices=unique_pipeline_tags,
value=None,
label="Filter rankings by task pipeline",
)
with gr.Accordion("Base model popularity ranking", open=False):
df_popularity = gr.DataFrame(
return_base_model_popularity(None), datatype="markdown"
)
dropdown.change(return_base_model_popularity, dropdown, df_popularity)
with gr.Accordion("Base model popularity ranking by organization", open=False):
df_popularity_org = gr.DataFrame(
return_base_model_popularity_by_org(None), datatype="markdown"
)
dropdown.change(
return_base_model_popularity_by_org, dropdown, df_popularity_org
)
demo.launch()