from huggingface_hub import list_models from cachetools import cached, TTLCache from toolz import groupby, valmap import gradio as gr from tqdm.auto import tqdm import pandas as pd @cached(TTLCache(maxsize=10, ttl=60 * 60 * 3)) def get_all_models(): models = list(tqdm(iter(list_models(cardData=True)))) return [model for model in models if model is not None] def has_base_model_info(model): try: if card_data := model.cardData: if base_model := card_data.get("base_model"): if isinstance(base_model, str): return True except AttributeError: return False return False grouped_by_has_base_model_info = groupby(has_base_model_info, get_all_models()) print(valmap(len, grouped_by_has_base_model_info)) summary = f"""{len(grouped_by_has_base_model_info.get(True)):,} models have base model info. {len(grouped_by_has_base_model_info.get(False)):,} models don't have base model info. Currently {round(len(grouped_by_has_base_model_info.get(True))/len(get_all_models())*100,2)}% of models have base model info.""" models_with_base_model_info = grouped_by_has_base_model_info.get(True) base_models = [ model.cardData.get("base_model") for model in models_with_base_model_info ] df = pd.DataFrame( pd.DataFrame({"base_model": base_models}).value_counts() ).reset_index() grouped_by_base_model = groupby( lambda x: x.cardData.get("base_model"), models_with_base_model_info ) all_base_models = df["base_model"].to_list() def return_models_for_base_model(base_model): models = grouped_by_base_model.get(base_model) # sort models by downloads models = sorted(models, key=lambda x: x.downloads, reverse=True) results = "" results += f"## {base_model} children\n\n" results += f"{base_model} has {len(models)} children\n\n" for model in models: url = f"https://huggingface.co/{model.modelId}" results += ( f"[{model.modelId}]({url}) | number of downloads {model.downloads}" + "\n\n" ) return results with gr.Blocks() as demo: gr.Markdown("### Models with base model info") gr.Markdown(summary) gr.Markdown("### Find all models trained from a base model") base_model = gr.Dropdown(all_base_models, label="Base Model") results = gr.Markdown() base_model.change(return_models_for_base_model, base_model, results) # gr.DataFrame(df) demo.launch()