File size: 6,280 Bytes
69765f6
9380316
7f66f08
e62ac39
9380316
 
 
7f66f08
9380316
 
69765f6
e62ac39
69765f6
 
 
 
 
e62ac39
eb97135
d102592
 
 
 
 
 
69765f6
 
 
 
 
 
 
 
 
 
 
 
f5faacd
 
 
 
 
 
69765f6
 
7f66f08
 
 
 
 
 
 
 
 
 
69765f6
 
7f66f08
69765f6
7f66f08
69765f6
 
 
e62ac39
69765f6
 
 
 
3215dde
 
69765f6
 
 
 
 
 
e62ac39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69765f6
 
 
 
 
 
 
 
f5faacd
69765f6
e62ac39
 
 
 
 
 
 
69765f6
 
f5faacd
69765f6
 
 
7f66f08
 
69765f6
 
e62ac39
 
 
69765f6
 
 
 
 
 
7f66f08
69765f6
 
 
 
 
 
 
 
9a1a3ec
69765f6
 
 
e62ac39
69765f6
 
 
 
 
 
 
 
 
325fff8
69765f6
 
 
3215dde
7f66f08
4072c1c
69765f6
4072c1c
7f66f08
69765f6
 
 
3215dde
 
 
 
 
 
e62ac39
3215dde
e62ac39
f5faacd
3215dde
 
 
 
75d97b4
3215dde
67b9f48
 
69765f6
75d97b4
 
 
3215dde
75d97b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62ac39
8d49daa
 
 
e62ac39
3215dde
ba8d4ac
e62ac39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69765f6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
from datetime import datetime, timedelta
from sys import platform
from typing import Any, Dict

import gradio as gr
import pandas as pd
from cachetools import TTLCache, cached
from diskcache import Cache
from dotenv import load_dotenv
from httpx import Client
from huggingface_hub import DatasetCard, hf_hub_url, list_datasets
from tqdm.auto import tqdm
from tqdm.contrib.concurrent import thread_map

load_dotenv()

LIMIT = None
CACHE_TIME = 60 * 60 * 12  # 12 hours
REMOVE_ORGS = {
    "HuggingFaceM4",
    "HuggingFaceBR4",
    "open-llm-leaderboard",
    "TrainingDataPro",
}

HF_TOKEN = os.getenv("HF_TOKEN")
USER_AGENT = os.getenv("USER_AGENT")


headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT}


client = Client(
    headers=headers,
    timeout=60,
)
# LOCAL = False
# if platform == "darwin":
#     LOCAL = True
# cache_dir = "cache" if LOCAL else "/data/diskcache"
# cache = Cache(cache_dir)
cache = TTLCache(maxsize=10, ttl=CACHE_TIME)


def get_three_months_ago():
    now = datetime.now()
    return now - timedelta(days=90)


def parse_date(date_str):
    # parse the created date from string 2023-11-17T16:39:54.000Z to datetime
    return datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%fZ")


def add_created_data(dataset):
    _id = dataset._id
    created = parse_date(dataset.createdAt)
    dataset_dict = dataset.__dict__
    dataset_dict["createdAt"] = created
    return dataset_dict


def get_readme_len(dataset: Dict[str, Any]):
    try:
        url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset")
        resp = client.get(url)
        if resp.status_code == 200:
            card = DatasetCard(resp.text)
            dataset["len"] = len(card.text)
            return dataset
    except Exception as e:
        print(e)
        return None


def check_ds_server_valid(id):
    url = f"https://datasets-server.huggingface.co/is-valid?dataset={id}"
    response = client.get(url)
    if response.status_code != 200:
        return False
    try:
        data = response.json()
        preview = data.get("preview")
        return preview is not None
    except Exception as e:
        print(e)
        return False


def has_server_preview(dataset):
    dataset["server_preview"] = check_ds_server_valid(dataset["id"])
    return dataset


def render_model_hub_link(hub_id):
    link = f"https://huggingface.co/datasets/{hub_id}"
    return (
        f'<a target="_blank" href="{link}" style="color: var(--link-text-color);'
        f' text-decoration: underline;text-decoration-style: dotted;">{hub_id}</a>'
    )


@cached(cache)
def get_datasets():
    return list(
        tqdm(
            iter(
                list_datasets(limit=LIMIT, full=True, sort="lastModified", direction=-1)
            )
        )
    )


@cached(cache)
def load_data():
    datasets = get_datasets()
    datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
    # datasets = [dataset.__dict__ for dataset in tqdm(datasets)]
    filtered = [ds for ds in datasets if ds["createdAt"] > get_three_months_ago()]
    ds_with_len = thread_map(get_readme_len, filtered)
    ds_with_len = [ds for ds in ds_with_len if ds is not None]
    ds_with_valid_status = thread_map(has_server_preview, ds_with_len)
    ds_with_valid_status = [ds for ds in ds_with_valid_status if ds is not None]
    return ds_with_valid_status


columns_to_drop = [
    "cardData",
    "gated",
    "sha",
    # "paperswithcode_id",
    "tags",
    "description",
    "siblings",
    "disabled",
    "_id",
    "private",
    "author",
    "citation",
    "lastModified",
]


def prep_dataframe(remove_orgs_and_users=REMOVE_ORGS, columns_to_drop=columns_to_drop):
    ds_with_len = load_data()
    if remove_orgs_and_users:
        ds_with_len = [
            ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users
        ]
    df = pd.DataFrame(ds_with_len)
    df["id"] = df["id"].apply(render_model_hub_link)
    if columns_to_drop:
        df = df.drop(columns=columns_to_drop)
    df = df.sort_values(by=["likes", "downloads", "len"], ascending=False)
    return df


def filter_df_by_max_age(df, max_age_days=None):
    df = df.dropna(subset=["createdAt"])
    now = datetime.now()
    if max_age_days is not None:
        max_date = now - timedelta(days=max_age_days)
        df = df[df["createdAt"] >= max_date]
    return df


def filter_by_readme_len(df, min_len=None):
    if min_len is not None:
        df = df[df["len"] >= min_len]
    return df


def filter_df(max_age_days=None, min_len=None, needs_server_preview: bool = False):
    df = prep_dataframe()
    if needs_server_preview:
        df = df[df["server_preview"] == True]
    if max_age_days is not None:
        df = filter_df_by_max_age(df, max_age_days=max_age_days)
    if min_len is not None:
        df = filter_by_readme_len(df, min_len=min_len)
    df = df.sort_values(by=["likes", "downloads", "len"], ascending=False)
    return df


with gr.Blocks() as demo:
    gr.Markdown("# Recent Datasets on the Hub")
    gr.Markdown(
        "Datasets added in the past 90 days with a README.md and some metadata."
    )
    with gr.Row():
        max_age_days = gr.Slider(
            label="Max Age (days)",
            value=7,
            minimum=0,
            maximum=90,
            step=1,
            interactive=True,
        )
        min_len = gr.Slider(
            label="Minimum README Length",
            value=300,
            minimum=0,
            maximum=1000,
            step=50,
            interactive=True,
        )
        needs_server_preview = gr.Checkbox(
            label="Exclude datasets without datasets-server preview?",
            value=False,
            interactive=True,
        )

    output = gr.DataFrame(filter_df, datatype="markdown", min_width=160 * 2.5, height=1000)
    max_age_days.input(
        filter_df,
        inputs=[max_age_days, min_len, needs_server_preview],
        outputs=[output],
    )
    min_len.input(
        filter_df,
        inputs=[max_age_days, min_len, needs_server_preview],
        outputs=[output],
    )
    needs_server_preview.change(
        filter_df,
        inputs=[max_age_days, min_len, needs_server_preview],
        outputs=[output],
    )

demo.launch()