Spaces:
Running
Running
Commit
·
4283f40
1
Parent(s):
32f75dc
refactor
Browse files- app.py +202 -123
- requirements.in +2 -1
- requirements.txt +23 -15
app.py
CHANGED
@@ -1,21 +1,28 @@
|
|
|
|
1 |
import os
|
|
|
2 |
from datetime import datetime, timedelta, timezone
|
3 |
from typing import Any, Dict
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
|
|
7 |
from cachetools import TTLCache, cached
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
-
from httpx import Client
|
10 |
from huggingface_hub import DatasetCard, hf_hub_url, list_datasets
|
11 |
from tqdm.auto import tqdm
|
12 |
-
|
|
|
|
|
13 |
|
14 |
load_dotenv()
|
15 |
|
16 |
-
LIMIT =
|
17 |
|
18 |
-
CACHE_TIME = 60 * 60 *
|
19 |
REMOVE_ORGS = {
|
20 |
"HuggingFaceM4",
|
21 |
"HuggingFaceBR4",
|
@@ -35,59 +42,117 @@ headers = {"authorization": f"Bearer {HF_TOKEN}", "user-agent": USER_AGENT}
|
|
35 |
|
36 |
client = Client(
|
37 |
headers=headers,
|
38 |
-
timeout=
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
45 |
cache = TTLCache(maxsize=10, ttl=CACHE_TIME)
|
46 |
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
-
def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
-
def get_readme_len(
|
|
|
62 |
try:
|
63 |
-
url = hf_hub_url(
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
except Exception as e:
|
70 |
print(e)
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
|
74 |
-
def check_ds_server_valid(
|
75 |
-
|
76 |
-
response = client.get(url)
|
77 |
-
if response.status_code != 200:
|
78 |
-
return False
|
79 |
try:
|
|
|
|
|
|
|
|
|
|
|
80 |
data = response.json()
|
81 |
preview = data.get("preview")
|
82 |
-
|
|
|
83 |
except Exception as e:
|
84 |
print(e)
|
85 |
-
|
|
|
86 |
|
87 |
|
88 |
-
def
|
89 |
-
|
90 |
-
return
|
91 |
|
92 |
|
93 |
def render_model_hub_link(hub_id):
|
@@ -98,90 +163,117 @@ def render_model_hub_link(hub_id):
|
|
98 |
)
|
99 |
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
@cached(cache)
|
111 |
-
def load_data():
|
112 |
-
datasets = get_datasets()
|
113 |
-
datasets = [add_created_data(dataset) for dataset in tqdm(datasets)]
|
114 |
-
# datasets = [dataset.__dict__ for dataset in tqdm(datasets)]
|
115 |
-
filtered = [ds for ds in datasets if ds["createdAt"] > get_three_months_ago()]
|
116 |
-
ds_with_len = thread_map(get_readme_len, filtered)
|
117 |
-
ds_with_len = [ds for ds in ds_with_len if ds is not None]
|
118 |
-
ds_with_valid_status = thread_map(has_server_preview, ds_with_len)
|
119 |
-
ds_with_valid_status = [ds for ds in ds_with_valid_status if ds is not None]
|
120 |
-
return ds_with_valid_status
|
121 |
-
|
122 |
-
|
123 |
-
columns_to_drop = [
|
124 |
-
"cardData",
|
125 |
-
"gated",
|
126 |
-
"sha",
|
127 |
-
"tags",
|
128 |
-
"description",
|
129 |
-
"siblings",
|
130 |
-
"disabled",
|
131 |
-
"_id",
|
132 |
-
"private",
|
133 |
-
"author",
|
134 |
-
# "citation",
|
135 |
-
"lastModified",
|
136 |
-
]
|
137 |
|
138 |
|
139 |
-
def
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
]
|
145 |
-
df = pd.DataFrame(ds_with_len)
|
146 |
-
df["id"] = df["id"].apply(render_model_hub_link)
|
147 |
-
if columns_to_drop:
|
148 |
-
df = df.drop(columns=columns_to_drop)
|
149 |
-
df = df.sort_values(by=["likes", "downloads", "len"], ascending=False)
|
150 |
return df
|
151 |
|
152 |
|
153 |
-
def
|
154 |
-
df = df.
|
155 |
-
now = datetime.now(timezone.utc)
|
156 |
-
if max_age_days is not None:
|
157 |
-
max_date = now - timedelta(days=max_age_days)
|
158 |
-
df = df[df["createdAt"] >= max_date]
|
159 |
return df
|
160 |
|
161 |
|
162 |
-
def
|
163 |
-
|
164 |
-
df = df[df["len"] >= min_len]
|
165 |
return df
|
166 |
|
167 |
|
168 |
-
def filter_df(max_age_days
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
df = filter_by_readme_len(df, min_len=min_len)
|
177 |
-
df = df.sort_values(by=["likes", "downloads", "len"], ascending=False)
|
178 |
-
return df
|
179 |
-
except Exception as e:
|
180 |
-
print(f"Error filtering dataframe: {str(e)}")
|
181 |
-
# Return empty dataframe with same columns if there's an error
|
182 |
-
return pd.DataFrame(
|
183 |
-
columns=["id", "likes", "downloads", "len", "createdAt", "server_preview"]
|
184 |
-
)
|
185 |
|
186 |
|
187 |
with gr.Blocks() as demo:
|
@@ -212,29 +304,16 @@ with gr.Blocks() as demo:
|
|
212 |
interactive=True,
|
213 |
)
|
214 |
|
215 |
-
# gr.Markdown(
|
216 |
-
# """
|
217 |
-
# <style>
|
218 |
-
# #dataset_table {
|
219 |
-
# height: 1000px;
|
220 |
-
# overflow: auto;
|
221 |
-
# }
|
222 |
-
# </style>
|
223 |
-
# """
|
224 |
-
# )
|
225 |
-
|
226 |
output = gr.DataFrame(
|
227 |
-
value=filter_df(7, 300, False),
|
228 |
interactive=False,
|
229 |
datatype="markdown",
|
230 |
-
min_width=160 * 2.5,
|
231 |
-
elem_id="dataset_table",
|
232 |
)
|
233 |
|
234 |
def update_df(age, length, preview):
|
235 |
return filter_df(age, length, preview)
|
236 |
|
237 |
-
#
|
238 |
for component in [max_age_days, min_len, needs_server_preview]:
|
239 |
component.change(
|
240 |
fn=update_df,
|
|
|
1 |
+
import asyncio
|
2 |
import os
|
3 |
+
import time
|
4 |
from datetime import datetime, timedelta, timezone
|
5 |
from typing import Any, Dict
|
6 |
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
+
import polars as pl
|
10 |
from cachetools import TTLCache, cached
|
11 |
+
from cashews import cache
|
12 |
+
from datasets import Dataset
|
13 |
from dotenv import load_dotenv
|
14 |
+
from httpx import AsyncClient, Client
|
15 |
from huggingface_hub import DatasetCard, hf_hub_url, list_datasets
|
16 |
from tqdm.auto import tqdm
|
17 |
+
|
18 |
+
|
19 |
+
cache.setup("mem://")
|
20 |
|
21 |
load_dotenv()
|
22 |
|
23 |
+
LIMIT = 15_000
|
24 |
|
25 |
+
CACHE_TIME = 60 * 60 * 1 # 1 hour
|
26 |
REMOVE_ORGS = {
|
27 |
"HuggingFaceM4",
|
28 |
"HuggingFaceBR4",
|
|
|
42 |
|
43 |
client = Client(
|
44 |
headers=headers,
|
45 |
+
timeout=30,
|
46 |
)
|
47 |
+
async_client = AsyncClient(
|
48 |
+
headers=headers,
|
49 |
+
timeout=30,
|
50 |
+
http2=True,
|
51 |
+
)
|
52 |
+
|
53 |
cache = TTLCache(maxsize=10, ttl=CACHE_TIME)
|
54 |
|
55 |
|
56 |
+
@cached(cache)
|
57 |
+
def get_initial_data():
|
58 |
+
datasets = list_datasets(
|
59 |
+
limit=LIMIT,
|
60 |
+
sort="createdAt",
|
61 |
+
direction=-1,
|
62 |
+
expand=[
|
63 |
+
"trendingScore",
|
64 |
+
"createdAt",
|
65 |
+
"author",
|
66 |
+
"downloads",
|
67 |
+
"likes",
|
68 |
+
"cardData",
|
69 |
+
"lastModified",
|
70 |
+
"private",
|
71 |
+
],
|
72 |
+
)
|
73 |
+
return [d.__dict__ for d in tqdm(datasets)]
|
74 |
+
|
75 |
+
|
76 |
+
keep_initial = [
|
77 |
+
"id",
|
78 |
+
"author",
|
79 |
+
"created_at",
|
80 |
+
"last_modified",
|
81 |
+
"private",
|
82 |
+
"downloads",
|
83 |
+
"likes",
|
84 |
+
"trending_score",
|
85 |
+
"card_data",
|
86 |
+
"cardData",
|
87 |
+
]
|
88 |
+
|
89 |
+
keep_final = [
|
90 |
+
"id",
|
91 |
+
"author",
|
92 |
+
"created_at",
|
93 |
+
"last_modified",
|
94 |
+
"downloads",
|
95 |
+
"likes",
|
96 |
+
"trending_score",
|
97 |
+
]
|
98 |
|
99 |
|
100 |
+
def prepare_initial_df():
|
101 |
+
ds = get_initial_data()
|
102 |
+
df = pl.LazyFrame(ds).select(keep_initial)
|
103 |
+
# remove private datasets
|
104 |
+
df = df.filter(~pl.col("private"))
|
105 |
+
df = df.filter(~pl.col("author").is_in(REMOVE_ORGS))
|
106 |
+
df = df.filter(~pl.col("id").str.contains("my-distiset"))
|
107 |
+
df = df.select(keep_final)
|
108 |
+
return df.collect()
|
109 |
|
110 |
|
111 |
+
async def get_readme_len(row: Dict[str, Any]):
|
112 |
+
SEMPAHORE = asyncio.Semaphore(30)
|
113 |
try:
|
114 |
+
url = hf_hub_url(row["id"], "README.md", repo_type="dataset")
|
115 |
+
async with SEMPAHORE:
|
116 |
+
resp = await async_client.get(url)
|
117 |
+
if resp.status_code == 200:
|
118 |
+
card = DatasetCard(resp.text)
|
119 |
+
row["len"] = len(card.text)
|
120 |
+
else:
|
121 |
+
row["len"] = 0 # Use 0 instead of None to avoid type issues
|
122 |
+
return row
|
123 |
except Exception as e:
|
124 |
print(e)
|
125 |
+
row["len"] = 0 # Use 0 instead of None to avoid type issues
|
126 |
+
return row
|
127 |
+
|
128 |
+
|
129 |
+
def prepare_data_with_readme_len(df: pl.DataFrame):
|
130 |
+
ds = Dataset.from_polars(df)
|
131 |
+
ds = ds.map(get_readme_len)
|
132 |
+
return ds
|
133 |
|
134 |
|
135 |
+
async def check_ds_server_valid(row):
|
136 |
+
SEMPAHORE = asyncio.Semaphore(10)
|
|
|
|
|
|
|
137 |
try:
|
138 |
+
url = f"https://datasets-server.huggingface.co/is-valid?dataset={row['id']}"
|
139 |
+
async with SEMPAHORE:
|
140 |
+
response = await async_client.get(url)
|
141 |
+
if response.status_code != 200:
|
142 |
+
row["has_server_preview"] = False
|
143 |
data = response.json()
|
144 |
preview = data.get("preview")
|
145 |
+
row["has_server_preview"] = preview is not None
|
146 |
+
return row
|
147 |
except Exception as e:
|
148 |
print(e)
|
149 |
+
row["has_server_preview"] = False
|
150 |
+
return row
|
151 |
|
152 |
|
153 |
+
def prep_data_with_server_preview(ds):
|
154 |
+
ds = ds.map(check_ds_server_valid)
|
155 |
+
return ds.to_polars()
|
156 |
|
157 |
|
158 |
def render_model_hub_link(hub_id):
|
|
|
163 |
)
|
164 |
|
165 |
|
166 |
+
def prep_final_data():
|
167 |
+
# Check if we have a valid cached parquet file
|
168 |
+
cache_dir = "cache"
|
169 |
+
os.makedirs(cache_dir, exist_ok=True)
|
170 |
+
|
171 |
+
# Get current time and calculate cache validity
|
172 |
+
now = time.time()
|
173 |
+
cache_valid_time = (
|
174 |
+
now - CACHE_TIME
|
175 |
+
) # Cache is valid if created within the last CACHE_TIME seconds
|
176 |
+
|
177 |
+
# Look for valid cache files
|
178 |
+
valid_cache_file = None
|
179 |
+
for filename in os.listdir(cache_dir):
|
180 |
+
if filename.startswith("dataset_cache_") and filename.endswith(".parquet"):
|
181 |
+
try:
|
182 |
+
# Extract timestamp from filename
|
183 |
+
timestamp = float(
|
184 |
+
filename.replace("dataset_cache_", "").replace(".parquet", "")
|
185 |
+
)
|
186 |
+
if timestamp > cache_valid_time:
|
187 |
+
valid_cache_file = os.path.join(cache_dir, filename)
|
188 |
+
break
|
189 |
+
except ValueError:
|
190 |
+
continue
|
191 |
+
|
192 |
+
# If we have a valid cache file, load it
|
193 |
+
if valid_cache_file:
|
194 |
+
print(f"Loading data from cache: {valid_cache_file}")
|
195 |
+
return pl.read_parquet(valid_cache_file)
|
196 |
+
|
197 |
+
# Otherwise, generate the data and cache it
|
198 |
+
print("Generating fresh data...")
|
199 |
+
df = prepare_initial_df()
|
200 |
+
ds = prepare_data_with_readme_len(df)
|
201 |
+
df = prep_data_with_server_preview(ds)
|
202 |
+
|
203 |
+
# Format the ID column as HTML links using string concatenation instead of regex
|
204 |
+
df = df.with_columns(
|
205 |
+
(
|
206 |
+
pl.lit('<a target="_blank" href="https://huggingface.co/datasets/')
|
207 |
+
+ pl.col("id")
|
208 |
+
+ pl.lit(
|
209 |
+
'" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">'
|
210 |
+
)
|
211 |
+
+ pl.col("id")
|
212 |
+
+ pl.lit("</a>")
|
213 |
+
).alias("hub_id")
|
214 |
)
|
215 |
+
df = df.drop("id")
|
216 |
+
df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True)
|
217 |
+
# make hub_id column first column
|
218 |
+
print(df.columns)
|
219 |
+
df = df.select(
|
220 |
+
[
|
221 |
+
"hub_id",
|
222 |
+
"author",
|
223 |
+
"created_at",
|
224 |
+
"last_modified",
|
225 |
+
"downloads",
|
226 |
+
"likes",
|
227 |
+
"trending_score",
|
228 |
+
"len",
|
229 |
+
"has_server_preview",
|
230 |
+
]
|
231 |
+
)
|
232 |
+
# Save to cache
|
233 |
+
cache_file = os.path.join(cache_dir, f"dataset_cache_{now}.parquet")
|
234 |
+
df.write_parquet(cache_file)
|
235 |
+
|
236 |
+
# Clean up old cache files
|
237 |
+
for filename in os.listdir(cache_dir):
|
238 |
+
if filename.startswith("dataset_cache_") and filename.endswith(".parquet"):
|
239 |
+
try:
|
240 |
+
timestamp = float(
|
241 |
+
filename.replace("dataset_cache_", "").replace(".parquet", "")
|
242 |
+
)
|
243 |
+
if timestamp <= cache_valid_time:
|
244 |
+
os.remove(os.path.join(cache_dir, filename))
|
245 |
+
except ValueError:
|
246 |
+
continue
|
247 |
|
248 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
|
251 |
+
def filter_by_max_age(df, max_age_days):
|
252 |
+
df = df.filter(
|
253 |
+
pl.col("created_at")
|
254 |
+
> (datetime.now(timezone.utc) - timedelta(days=max_age_days))
|
255 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
return df
|
257 |
|
258 |
|
259 |
+
def filter_by_min_len(df, min_len):
|
260 |
+
df = df.filter(pl.col("len") >= min_len)
|
|
|
|
|
|
|
|
|
261 |
return df
|
262 |
|
263 |
|
264 |
+
def filter_by_server_preview(df, needs_server_preview):
|
265 |
+
df = df.filter(pl.col("has_server_preview") == needs_server_preview)
|
|
|
266 |
return df
|
267 |
|
268 |
|
269 |
+
def filter_df(max_age_days, min_len, needs_server_preview):
|
270 |
+
df = prep_final_data()
|
271 |
+
df = df.lazy()
|
272 |
+
df = filter_by_max_age(df, max_age_days)
|
273 |
+
df = filter_by_min_len(df, min_len)
|
274 |
+
df = filter_by_server_preview(df, needs_server_preview)
|
275 |
+
df = df.sort(by=["trending_score", "likes", "downloads", "len"], descending=True)
|
276 |
+
return df.collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
|
279 |
with gr.Blocks() as demo:
|
|
|
304 |
interactive=True,
|
305 |
)
|
306 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
output = gr.DataFrame(
|
308 |
+
value=filter_df(7, 300, False),
|
309 |
interactive=False,
|
310 |
datatype="markdown",
|
|
|
|
|
311 |
)
|
312 |
|
313 |
def update_df(age, length, preview):
|
314 |
return filter_df(age, length, preview)
|
315 |
|
316 |
+
# Connect the input components to the update function
|
317 |
for component in [max_age_days, min_len, needs_server_preview]:
|
318 |
component.change(
|
319 |
fn=update_df,
|
requirements.in
CHANGED
@@ -3,7 +3,8 @@ datasets
|
|
3 |
datasets
|
4 |
diskcache
|
5 |
gradio==5.14.0
|
6 |
-
httpx
|
7 |
huggingface_hub
|
8 |
pandas
|
9 |
python-dotenv
|
|
|
|
3 |
datasets
|
4 |
diskcache
|
5 |
gradio==5.14.0
|
6 |
+
httpx[http2]
|
7 |
huggingface_hub
|
8 |
pandas
|
9 |
python-dotenv
|
10 |
+
polars
|
requirements.txt
CHANGED
@@ -2,9 +2,9 @@
|
|
2 |
# uv pip compile requirements.in -o requirements.txt
|
3 |
aiofiles==23.2.1
|
4 |
# via gradio
|
5 |
-
aiohappyeyeballs==2.
|
6 |
# via aiohttp
|
7 |
-
aiohttp==3.11.
|
8 |
# via
|
9 |
# datasets
|
10 |
# fsspec
|
@@ -17,9 +17,9 @@ anyio==4.8.0
|
|
17 |
# gradio
|
18 |
# httpx
|
19 |
# starlette
|
20 |
-
attrs==25.
|
21 |
# via aiohttp
|
22 |
-
cachetools==5.5.
|
23 |
# via -r requirements.in
|
24 |
certifi==2025.1.31
|
25 |
# via
|
@@ -32,7 +32,7 @@ click==8.1.8
|
|
32 |
# via
|
33 |
# typer
|
34 |
# uvicorn
|
35 |
-
datasets==3.2
|
36 |
# via -r requirements.in
|
37 |
dill==0.3.8
|
38 |
# via
|
@@ -40,7 +40,7 @@ dill==0.3.8
|
|
40 |
# multiprocess
|
41 |
diskcache==5.6.3
|
42 |
# via -r requirements.in
|
43 |
-
fastapi==0.115.
|
44 |
# via gradio
|
45 |
ffmpy==0.5.0
|
46 |
# via gradio
|
@@ -52,7 +52,7 @@ frozenlist==1.5.0
|
|
52 |
# via
|
53 |
# aiohttp
|
54 |
# aiosignal
|
55 |
-
fsspec==2024.
|
56 |
# via
|
57 |
# datasets
|
58 |
# gradio-client
|
@@ -65,6 +65,10 @@ h11==0.14.0
|
|
65 |
# via
|
66 |
# httpcore
|
67 |
# uvicorn
|
|
|
|
|
|
|
|
|
68 |
httpcore==1.0.7
|
69 |
# via httpx
|
70 |
httpx==0.28.1
|
@@ -73,19 +77,21 @@ httpx==0.28.1
|
|
73 |
# gradio
|
74 |
# gradio-client
|
75 |
# safehttpx
|
76 |
-
huggingface-hub==0.
|
77 |
# via
|
78 |
# -r requirements.in
|
79 |
# datasets
|
80 |
# gradio
|
81 |
# gradio-client
|
|
|
|
|
82 |
idna==3.10
|
83 |
# via
|
84 |
# anyio
|
85 |
# httpx
|
86 |
# requests
|
87 |
# yarl
|
88 |
-
jinja2==3.1.
|
89 |
# via gradio
|
90 |
markdown-it-py==3.0.0
|
91 |
# via rich
|
@@ -101,7 +107,7 @@ multidict==6.1.0
|
|
101 |
# yarl
|
102 |
multiprocess==0.70.16
|
103 |
# via datasets
|
104 |
-
numpy==2.2.
|
105 |
# via
|
106 |
# datasets
|
107 |
# gradio
|
@@ -121,11 +127,13 @@ pandas==2.2.3
|
|
121 |
# gradio
|
122 |
pillow==11.1.0
|
123 |
# via gradio
|
124 |
-
|
|
|
|
|
125 |
# via
|
126 |
# aiohttp
|
127 |
# yarl
|
128 |
-
pyarrow==19.0.
|
129 |
# via datasets
|
130 |
pydantic==2.10.6
|
131 |
# via
|
@@ -156,7 +164,7 @@ requests==2.32.3
|
|
156 |
# huggingface-hub
|
157 |
rich==13.9.4
|
158 |
# via typer
|
159 |
-
ruff==0.9.
|
160 |
# via gradio
|
161 |
safehttpx==0.1.6
|
162 |
# via gradio
|
@@ -168,7 +176,7 @@ six==1.17.0
|
|
168 |
# via python-dateutil
|
169 |
sniffio==1.3.1
|
170 |
# via anyio
|
171 |
-
starlette==0.
|
172 |
# via
|
173 |
# fastapi
|
174 |
# gradio
|
@@ -178,7 +186,7 @@ tqdm==4.67.1
|
|
178 |
# via
|
179 |
# datasets
|
180 |
# huggingface-hub
|
181 |
-
typer==0.15.
|
182 |
# via gradio
|
183 |
typing-extensions==4.12.2
|
184 |
# via
|
|
|
2 |
# uv pip compile requirements.in -o requirements.txt
|
3 |
aiofiles==23.2.1
|
4 |
# via gradio
|
5 |
+
aiohappyeyeballs==2.6.1
|
6 |
# via aiohttp
|
7 |
+
aiohttp==3.11.13
|
8 |
# via
|
9 |
# datasets
|
10 |
# fsspec
|
|
|
17 |
# gradio
|
18 |
# httpx
|
19 |
# starlette
|
20 |
+
attrs==25.2.0
|
21 |
# via aiohttp
|
22 |
+
cachetools==5.5.2
|
23 |
# via -r requirements.in
|
24 |
certifi==2025.1.31
|
25 |
# via
|
|
|
32 |
# via
|
33 |
# typer
|
34 |
# uvicorn
|
35 |
+
datasets==3.3.2
|
36 |
# via -r requirements.in
|
37 |
dill==0.3.8
|
38 |
# via
|
|
|
40 |
# multiprocess
|
41 |
diskcache==5.6.3
|
42 |
# via -r requirements.in
|
43 |
+
fastapi==0.115.11
|
44 |
# via gradio
|
45 |
ffmpy==0.5.0
|
46 |
# via gradio
|
|
|
52 |
# via
|
53 |
# aiohttp
|
54 |
# aiosignal
|
55 |
+
fsspec==2024.12.0
|
56 |
# via
|
57 |
# datasets
|
58 |
# gradio-client
|
|
|
65 |
# via
|
66 |
# httpcore
|
67 |
# uvicorn
|
68 |
+
h2==4.2.0
|
69 |
+
# via httpx
|
70 |
+
hpack==4.1.0
|
71 |
+
# via h2
|
72 |
httpcore==1.0.7
|
73 |
# via httpx
|
74 |
httpx==0.28.1
|
|
|
77 |
# gradio
|
78 |
# gradio-client
|
79 |
# safehttpx
|
80 |
+
huggingface-hub==0.29.3
|
81 |
# via
|
82 |
# -r requirements.in
|
83 |
# datasets
|
84 |
# gradio
|
85 |
# gradio-client
|
86 |
+
hyperframe==6.1.0
|
87 |
+
# via h2
|
88 |
idna==3.10
|
89 |
# via
|
90 |
# anyio
|
91 |
# httpx
|
92 |
# requests
|
93 |
# yarl
|
94 |
+
jinja2==3.1.6
|
95 |
# via gradio
|
96 |
markdown-it-py==3.0.0
|
97 |
# via rich
|
|
|
107 |
# yarl
|
108 |
multiprocess==0.70.16
|
109 |
# via datasets
|
110 |
+
numpy==2.2.3
|
111 |
# via
|
112 |
# datasets
|
113 |
# gradio
|
|
|
127 |
# gradio
|
128 |
pillow==11.1.0
|
129 |
# via gradio
|
130 |
+
polars==1.24.0
|
131 |
+
# via -r requirements.in
|
132 |
+
propcache==0.3.0
|
133 |
# via
|
134 |
# aiohttp
|
135 |
# yarl
|
136 |
+
pyarrow==19.0.1
|
137 |
# via datasets
|
138 |
pydantic==2.10.6
|
139 |
# via
|
|
|
164 |
# huggingface-hub
|
165 |
rich==13.9.4
|
166 |
# via typer
|
167 |
+
ruff==0.9.10
|
168 |
# via gradio
|
169 |
safehttpx==0.1.6
|
170 |
# via gradio
|
|
|
176 |
# via python-dateutil
|
177 |
sniffio==1.3.1
|
178 |
# via anyio
|
179 |
+
starlette==0.46.1
|
180 |
# via
|
181 |
# fastapi
|
182 |
# gradio
|
|
|
186 |
# via
|
187 |
# datasets
|
188 |
# huggingface-hub
|
189 |
+
typer==0.15.2
|
190 |
# via gradio
|
191 |
typing-extensions==4.12.2
|
192 |
# via
|