import os from datetime import datetime, timedelta from sys import platform from typing import Any, Dict import gradio as gr import pandas as pd from cachetools import TTLCache, cached from diskcache import Cache from dotenv import load_dotenv from httpx import Client from huggingface_hub import DatasetCard, hf_hub_url, list_datasets from tqdm.auto import tqdm from tqdm.contrib.concurrent import thread_map load_dotenv() LIMIT = None CACHE_TIME = 60 * 60 * 12 # 12 hours REMOVE_ORGS = { "HuggingFaceM4", "HuggingFaceBR4", "open-llm-leaderboard", "TrainingDataPro", } HF_TOKEN = os.getenv("HF_TOKEN") USER_AGENT = os.getenv("USER_AGENT") headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT} client = Client( headers=headers, timeout=60, ) # LOCAL = False # if platform == "darwin": # LOCAL = True # cache_dir = "cache" if LOCAL else "/data/diskcache" # cache = Cache(cache_dir) cache = TTLCache(maxsize=10, ttl=CACHE_TIME) def get_three_months_ago(): now = datetime.now() return now - timedelta(days=90) def parse_date(date_str): # parse the created date from string 2023-11-17T16:39:54.000Z to datetime return datetime.strptime(date_str, "%Y-%m-%dT%H:%M:%S.%fZ") def add_created_data(dataset): _id = dataset._id created = parse_date(dataset.createdAt) dataset_dict = dataset.__dict__ dataset_dict["createdAt"] = created return dataset_dict def get_readme_len(dataset: Dict[str, Any]): try: url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset") resp = client.get(url) if resp.status_code == 200: card = DatasetCard(resp.text) dataset["len"] = len(card.text) return dataset except Exception as e: print(e) return None def check_ds_server_valid(id): url = f"https://datasets-server.huggingface.co/is-valid?dataset={id}" response = client.get(url) if response.status_code != 200: return False try: data = response.json() preview = data.get("preview") return preview is not None except Exception as e: print(e) return False def has_server_preview(dataset): dataset["server_preview"] = check_ds_server_valid(dataset["id"]) return dataset def render_model_hub_link(hub_id): link = f"https://huggingface.co/datasets/{hub_id}" return ( f'{hub_id}' ) @cached(cache) def get_datasets(): return list( tqdm( iter( list_datasets(limit=LIMIT, full=True, sort="lastModified", direction=-1) ) ) ) @cached(cache) def load_data(): datasets = get_datasets() datasets = [add_created_data(dataset) for dataset in tqdm(datasets)] # datasets = [dataset.__dict__ for dataset in tqdm(datasets)] filtered = [ds for ds in datasets if ds["createdAt"] > get_three_months_ago()] ds_with_len = thread_map(get_readme_len, filtered) ds_with_len = [ds for ds in ds_with_len if ds is not None] ds_with_valid_status = thread_map(has_server_preview, ds_with_len) ds_with_valid_status = [ds for ds in ds_with_valid_status if ds is not None] return ds_with_valid_status columns_to_drop = [ "cardData", "gated", "sha", # "paperswithcode_id", "tags", "description", "siblings", "disabled", "_id", "private", "author", "citation", "lastModified", ] def prep_dataframe(remove_orgs_and_users=REMOVE_ORGS, columns_to_drop=columns_to_drop): ds_with_len = load_data() if remove_orgs_and_users: ds_with_len = [ ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users ] df = pd.DataFrame(ds_with_len) df["id"] = df["id"].apply(render_model_hub_link) if columns_to_drop: df = df.drop(columns=columns_to_drop) df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) return df def filter_df_by_max_age(df, max_age_days=None): df = df.dropna(subset=["createdAt"]) now = datetime.now() if max_age_days is not None: max_date = now - timedelta(days=max_age_days) df = df[df["createdAt"] >= max_date] return df def filter_by_readme_len(df, min_len=None): if min_len is not None: df = df[df["len"] >= min_len] return df def filter_df(max_age_days=None, min_len=None, needs_server_preview: bool = False): df = prep_dataframe() if needs_server_preview: df = df[df["server_preview"] == True] if max_age_days is not None: df = filter_df_by_max_age(df, max_age_days=max_age_days) if min_len is not None: df = filter_by_readme_len(df, min_len=min_len) df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) return df with gr.Blocks() as demo: gr.Markdown("# Recent Datasets on the Hub") gr.Markdown( "Datasets added in the past 90 days with a README.md and some metadata." ) with gr.Row(): max_age_days = gr.Slider( label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True, ) min_len = gr.Slider( label="Minimum README Length", value=300, minimum=0, maximum=1000, step=50, interactive=True, ) needs_server_preview = gr.Checkbox( label="Exclude datasets without datasets-server preview?", value=False, interactive=True, ) output = gr.DataFrame(filter_df, datatype="markdown", min_width=160 * 2.5, height=1000) max_age_days.input( filter_df, inputs=[max_age_days, min_len, needs_server_preview], outputs=[output], ) min_len.input( filter_df, inputs=[max_age_days, min_len, needs_server_preview], outputs=[output], ) needs_server_preview.change( filter_df, inputs=[max_age_days, min_len, needs_server_preview], outputs=[output], ) demo.launch()