import os from datetime import datetime, timedelta from sys import platform import gradio as gr import pandas as pd from diskcache import Cache from dotenv import load_dotenv from httpx import Client from huggingface_hub import hf_hub_url, list_datasets from tqdm.auto import tqdm from tqdm.contrib.concurrent import thread_map load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") USER_AGENT = os.getenv("USER_AGENT") headers = {"authorization": f"Bearer ${HF_TOKEN}", "user-agent": USER_AGENT} client = Client( headers=headers, timeout=60, ) LOCAL = False if platform == "darwin": LOCAL = True cache_dir = "cache" if LOCAL else "/data/diskcache" cache = Cache(cache_dir) def add_created_data(dataset): _id = dataset._id created = datetime.fromtimestamp(int(_id[:8], 16)) dataset_dict = dataset.__dict__ dataset_dict["created"] = created return dataset_dict def get_three_months_ago(): now = datetime.now() return now - timedelta(days=90) def get_readme_len(dataset): try: url = hf_hub_url(dataset["id"], "README.md", repo_type="dataset") resp = client.get(url) if resp.status_code == 200: dataset["len"] = len(resp.text) return dataset except Exception as e: print(e) return None def render_model_hub_link(hub_id): link = f"https://huggingface.co/datasets/{hub_id}" return ( f'{hub_id}' ) @cache.memoize(expire=60 * 60 * 12) def get_datasets(): return list(tqdm(iter(list_datasets(limit=None, full=True)))) @cache.memoize(expire=60 * 60 * 12) def load_data(): datasets = get_datasets() datasets = [add_created_data(dataset) for dataset in tqdm(datasets)] filtered = [ds for ds in datasets if ds.get("cardData")] filtered = [ds for ds in filtered if ds["created"] > get_three_months_ago()] ds_with_len = thread_map(get_readme_len, filtered) ds_with_len = [ds for ds in ds_with_len if ds is not None] return ds_with_len remove_orgs = {"HuggingFaceM4", "HuggingFaceBR4", "open-llm-leaderboard"} columns_to_drop = [ "cardData", "gated", "sha", "paperswithcode_id", "tags", "description", "siblings", "disabled", "_id", "private", "author", "citation", "lastModified", ] def prep_dataframe(remove_orgs_and_users=remove_orgs, columns_to_drop=columns_to_drop): ds_with_len = load_data() if remove_orgs_and_users: ds_with_len = [ ds for ds in ds_with_len if ds["author"] not in remove_orgs_and_users ] df = pd.DataFrame(ds_with_len) df["id"] = df["id"].apply(render_model_hub_link) if columns_to_drop: df = df.drop(columns=columns_to_drop) df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) return df def filter_df_by_max_age(max_age_days=None): df = prep_dataframe() df = df.dropna(subset=["created"]) now = datetime.now() if max_age_days is not None: max_date = now - timedelta(days=max_age_days) df = df[df["created"] >= max_date] df = df.sort_values(by=["likes", "downloads", "len"], ascending=False) return df def filter_by_readme_len(df, min_len=None, max_len=None): pass with gr.Blocks() as demo: max_age_days = gr.Slider( label="Max Age (days)", value=7, minimum=0, maximum=90, step=1, interactive=True ) output = gr.DataFrame(prep_dataframe(), datatype="markdown", min_width=160 * 2.5) max_age_days.input(filter_df_by_max_age, inputs=[max_age_days], outputs=[output]) demo.launch()