Spaces:
Runtime error
Runtime error
File size: 2,048 Bytes
f4c0c85 ec8f6c0 f4c0c85 5293913 774de86 f4c0c85 436880a f4c0c85 79e040a f4c0c85 97dd972 f4c0c85 5293913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Oppo Refuse Match metric."""
import re
import string
import datasets
import numpy as np
import evaluate
from .eval import has_answer
_DESCRIPTION = """
Returns the rate at which the input predicted strings exactly match the refuse list
"""
_KWARGS_DESCRIPTION = """
Args:
predictions: List of predicted texts. -> [prediction] only one
references: not use
Returns:
oppo_refuse_match: Dictionary containing oppo_refuse_match rate. Possible values are 0 or 1
Examples:
"""
_CITATION = """ the dpr exact match
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class OppoRefuseMatch(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence")
}
),
reference_urls=[],
)
def _compute(
self,
predictions
):
patterns = [
r"There is no", r"no", r"non-existent", r"not a", r"none"
]
score_list=0
for prediction in predictions:
if has_answer(prediction,patterns):
score_list+=1
return {"oppo_refuse_match": score_list/len(predictions)}
|