libraxiong's picture
Update app.py
e0e6ed0 verified
from evaluate.utils import launch_gradio_widget,parse_readme
import evaluate
import os
# os.environ['http_proxy']='http://localhost:7890'
# os.environ['https_proxy']='http://localhost:7890'
import gradio as gr
from evaluate.utils.gradio import infer_gradio_input_types,json_to_string_type,parse_gradio_data
from pathlib import Path
from datasets import Value
import sys
def cal_oppo_refuse_match(predictions):
refuse=evaluate.load('libraxiong/oppo_refuse_match')
return refuse.compute(predictions=predictions)
def launch_gradio_widget(metric):
"""Launches `metric` widget with Gradio."""
# del os.environ['http_proxy']
# del os.environ['https_proxy']
# os.environ['no_proxy']='localhost, 127.0.0.1, ::1'
try:
import gradio as gr
except ImportError as error:
# logger.error("To create a metric widget with Gradio make sure gradio is installed.")
raise error
local_path = Path(sys.path[0])
def compute(data):
print(data)
data=eval(data)
return metric.compute(predictions=data)
iface = gr.Interface(
fn=compute,
inputs=gr.Textbox(label=metric.name),
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description + "\nIf this is a text-based metric. Just input the predictions,the format is ['some','some']"
),
title=f"Metric: {metric.name}",
article=parse_readme(local_path / "README.md"),
# TODO: load test cases and use them to populate examples
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
)
iface.launch()
if __name__=='__main__':
launch_gradio_widget(evaluate.load('libraxiong/oppo_refuse_match'))