Go
Browse files- app.py +185 -0
- core.py +356 -0
- examples/beach.jpg +0 -0
- examples/field.jpg +0 -0
- examples/sky.jpg +0 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from core import Ladeco
|
3 |
+
from matplotlib.figure import Figure
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import matplotlib as mpl
|
6 |
+
import spaces
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
mpl.style.use("dark_background")
|
11 |
+
ladeco = Ladeco()
|
12 |
+
|
13 |
+
|
14 |
+
@spaces.GPU
|
15 |
+
def infer(img: str) -> tuple[Figure, Figure]:
|
16 |
+
out = ladeco.predict(img)
|
17 |
+
|
18 |
+
seg = out.visualize(level=2)[0].image
|
19 |
+
colormap = out.color_map(level=2)
|
20 |
+
|
21 |
+
area = out.area()[0]
|
22 |
+
|
23 |
+
# match the color of segmentation image and pie chart
|
24 |
+
colors = []
|
25 |
+
l2_area = {}
|
26 |
+
for labelname, area_ratio in area.items():
|
27 |
+
if labelname.startswith("l2") and area_ratio > 0:
|
28 |
+
colors.append(colormap[labelname])
|
29 |
+
labelname = labelname.replace("l2_", "").capitalize()
|
30 |
+
l2_area[labelname] = area_ratio
|
31 |
+
|
32 |
+
pie = plot_pie(l2_area, colors=colors)
|
33 |
+
|
34 |
+
return seg, pie
|
35 |
+
|
36 |
+
|
37 |
+
def plot_pie(data: dict[str, float], colors=None) -> Figure:
|
38 |
+
fig, ax = plt.subplots()
|
39 |
+
|
40 |
+
labels = list(data.keys())
|
41 |
+
sizes = list(data.values())
|
42 |
+
|
43 |
+
*_, autotexts = ax.pie(sizes, labels=labels, autopct="%1.1f%%", colors=colors)
|
44 |
+
|
45 |
+
for percent_text in autotexts:
|
46 |
+
percent_text.set_color("k")
|
47 |
+
|
48 |
+
ax.axis("equal")
|
49 |
+
|
50 |
+
return fig
|
51 |
+
|
52 |
+
|
53 |
+
def choose_example(imgpath: str) -> gr.Image:
|
54 |
+
img = Image.open(imgpath)
|
55 |
+
width, height = img.size
|
56 |
+
ratio = 512 / max(width, height)
|
57 |
+
img = img.resize((int(width * ratio), int(height * ratio)))
|
58 |
+
return gr.Image(value=img, label="輸入影像(不支援 SVG 格式)", type="filepath")
|
59 |
+
|
60 |
+
|
61 |
+
css = """
|
62 |
+
.reference {
|
63 |
+
text-align: center;
|
64 |
+
font-size: 1.2em;
|
65 |
+
color: #d1d5db;
|
66 |
+
margin-bottom: 20px;
|
67 |
+
}
|
68 |
+
.reference a {
|
69 |
+
color: #FB923C;
|
70 |
+
text-decoration: none;
|
71 |
+
}
|
72 |
+
.reference a:hover {
|
73 |
+
text-decoration: underline;
|
74 |
+
color: #FB923C;
|
75 |
+
}
|
76 |
+
.description {
|
77 |
+
text-align: center;
|
78 |
+
font-size: 1.1em;
|
79 |
+
color: #d1d5db;
|
80 |
+
margin-bottom: 25px;
|
81 |
+
}
|
82 |
+
.footer {
|
83 |
+
text-align: center;
|
84 |
+
margin-top: 30px;
|
85 |
+
padding-top: 20px;
|
86 |
+
border-top: 1px solid #ddd;
|
87 |
+
color: #d1d5db;
|
88 |
+
font-size: 14px;
|
89 |
+
}
|
90 |
+
.main-title {
|
91 |
+
font-size: 24px;
|
92 |
+
font-weight: bold;
|
93 |
+
text-align: center;
|
94 |
+
margin-bottom: 20px;
|
95 |
+
}
|
96 |
+
.selected-image {
|
97 |
+
height: 756px;
|
98 |
+
}
|
99 |
+
.example-image {
|
100 |
+
height: 220px;
|
101 |
+
}
|
102 |
+
""".strip()
|
103 |
+
theme = gr.themes.Base(
|
104 |
+
primary_hue="orange",
|
105 |
+
secondary_hue="orange",
|
106 |
+
neutral_hue="gray",
|
107 |
+
font=gr.themes.GoogleFont("Source Sans Pro"),
|
108 |
+
).set(
|
109 |
+
background_fill_primary="*neutral_950", # 主背景色(深黑)
|
110 |
+
button_primary_background_fill="*primary_500", # 按鈕顏色(橘色)
|
111 |
+
body_text_color="*neutral_200", # 文字顏色(淺色)
|
112 |
+
)
|
113 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
114 |
+
gr.HTML(
|
115 |
+
"""
|
116 |
+
<div class="main-title">LaDeco 景觀環境影像語意分析模型</div>
|
117 |
+
<div class="reference">
|
118 |
+
引用資料:
|
119 |
+
<a href="https://www.sciencedirect.com/science/article/pii/S1574954123003187" target="_blank">
|
120 |
+
Li-Chih Ho (2023), LaDeco: A Tool to Analyze Visual Landscape Elements, Ecological Informatics, vol. 78.
|
121 |
+
</a>
|
122 |
+
</div>
|
123 |
+
""".strip()
|
124 |
+
)
|
125 |
+
with gr.Row(equal_height=True):
|
126 |
+
with gr.Group():
|
127 |
+
img = gr.Image(
|
128 |
+
label="輸入影像(不支援 SVG 格式)",
|
129 |
+
type="filepath",
|
130 |
+
elem_classes="selected-image",
|
131 |
+
)
|
132 |
+
gr.Label("範例影像", show_label=False)
|
133 |
+
with gr.Row():
|
134 |
+
ex1 = gr.Image(
|
135 |
+
value="examples/beach.jpg",
|
136 |
+
show_label=False,
|
137 |
+
type="filepath",
|
138 |
+
elem_classes="example-image",
|
139 |
+
interactive=False,
|
140 |
+
show_download_button=False,
|
141 |
+
show_fullscreen_button=False,
|
142 |
+
)
|
143 |
+
ex2 = gr.Image(
|
144 |
+
value="examples/field.jpg",
|
145 |
+
show_label=False,
|
146 |
+
type="filepath",
|
147 |
+
elem_classes="example-image",
|
148 |
+
interactive=False,
|
149 |
+
show_download_button=False,
|
150 |
+
show_fullscreen_button=False,
|
151 |
+
)
|
152 |
+
ex3 = gr.Image(
|
153 |
+
value="examples/sky.jpg",
|
154 |
+
show_label=False,
|
155 |
+
type="filepath",
|
156 |
+
elem_classes="example-image",
|
157 |
+
interactive=False,
|
158 |
+
show_download_button=False,
|
159 |
+
show_fullscreen_button=False,
|
160 |
+
)
|
161 |
+
|
162 |
+
with gr.Column():
|
163 |
+
seg = gr.Plot(label="語意分割")
|
164 |
+
pie = gr.Plot(label="元素面積比例")
|
165 |
+
|
166 |
+
start = gr.Button("開始分析", variant="primary")
|
167 |
+
|
168 |
+
gr.HTML(
|
169 |
+
"""
|
170 |
+
<div class="footer">
|
171 |
+
© 2024 LaDeco 版權所���<br>
|
172 |
+
開發者:何立智、楊哲睿
|
173 |
+
</div>
|
174 |
+
""".strip()
|
175 |
+
)
|
176 |
+
|
177 |
+
start.click(fn=infer, inputs=img, outputs=[seg, pie])
|
178 |
+
|
179 |
+
ex1.select(fn=choose_example, inputs=ex1, outputs=img)
|
180 |
+
ex2.select(fn=choose_example, inputs=ex2, outputs=img)
|
181 |
+
ex3.select(fn=choose_example, inputs=ex3, outputs=img)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
demo.launch()
|
core.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Core part of LaDeco v2
|
2 |
+
|
3 |
+
Example usage:
|
4 |
+
>>> from core import Ladeco
|
5 |
+
>>> from PIL import Image
|
6 |
+
>>> from pathlib import Path
|
7 |
+
>>>
|
8 |
+
>>> # predict
|
9 |
+
>>> ldc = Ladeco()
|
10 |
+
>>> imgs = (thing for thing in Path("example").glob("*.jpg"))
|
11 |
+
>>> out = ldc.predict(imgs)
|
12 |
+
>>>
|
13 |
+
>>> # output - visualization
|
14 |
+
>>> segs = out.visualize(level=2)
|
15 |
+
>>> segs[0].image.show()
|
16 |
+
>>>
|
17 |
+
>>> # output - element area
|
18 |
+
>>> area = out.area()
|
19 |
+
>>> area[0]
|
20 |
+
{"fid": "example/.jpg", "l1_nature": 0.673, "l1_man_made": 0.241, ...}
|
21 |
+
"""
|
22 |
+
from matplotlib.patches import Rectangle
|
23 |
+
from pathlib import Path
|
24 |
+
from PIL import Image
|
25 |
+
from transformers import AutoModelForUniversalSegmentation, AutoProcessor
|
26 |
+
import math
|
27 |
+
import matplotlib as mpl
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from functools import lru_cache
|
32 |
+
from matplotlib.figure import Figure
|
33 |
+
import numpy.typing as npt
|
34 |
+
from typing import Iterable, NamedTuple, Generator
|
35 |
+
from tqdm import tqdm
|
36 |
+
|
37 |
+
|
38 |
+
class LadecoVisualization(NamedTuple):
|
39 |
+
filename: str
|
40 |
+
image: Figure
|
41 |
+
|
42 |
+
|
43 |
+
class Ladeco:
|
44 |
+
|
45 |
+
def __init__(self,
|
46 |
+
model_name: str = "shi-labs/oneformer_ade20k_swin_large",
|
47 |
+
area_threshold: float = 0.01,
|
48 |
+
device: str | None = None,
|
49 |
+
):
|
50 |
+
if device is None:
|
51 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
else:
|
53 |
+
self.device = device
|
54 |
+
|
55 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
56 |
+
self.model = AutoModelForUniversalSegmentation.from_pretrained(model_name).to(self.device)
|
57 |
+
|
58 |
+
self.area_threshold = area_threshold
|
59 |
+
|
60 |
+
self.ade20k_labels = {
|
61 |
+
name.strip(): int(idx)
|
62 |
+
for name, idx in self.model.config.label2id.items()
|
63 |
+
}
|
64 |
+
self.ladeco2ade20k: dict[str, tuple[int]] = _get_ladeco_labels(self.ade20k_labels)
|
65 |
+
|
66 |
+
def predict(
|
67 |
+
self, image_paths: str | Path | Iterable[str | Path], show_progress: bool = False
|
68 |
+
) -> "LadecoOutput":
|
69 |
+
if isinstance(image_paths, (str, Path)):
|
70 |
+
imgpaths = [image_paths]
|
71 |
+
else:
|
72 |
+
imgpaths = list(image_paths)
|
73 |
+
|
74 |
+
images = (
|
75 |
+
Image.open(img_path).convert("RGB")
|
76 |
+
for img_path in imgpaths
|
77 |
+
)
|
78 |
+
|
79 |
+
# batch inference functionality of OneFormer is broken
|
80 |
+
masks: list[torch.Tensor] = []
|
81 |
+
for img in tqdm(images, total=len(imgpaths), desc="Segmenting", disable=not show_progress):
|
82 |
+
samples = self.processor(
|
83 |
+
images=img, task_inputs=["semantic"], return_tensors="pt"
|
84 |
+
).to(self.device)
|
85 |
+
|
86 |
+
with torch.no_grad():
|
87 |
+
outputs = self.model(**samples)
|
88 |
+
|
89 |
+
masks.append(
|
90 |
+
self.processor.post_process_semantic_segmentation(outputs)[0]
|
91 |
+
)
|
92 |
+
|
93 |
+
return LadecoOutput(imgpaths, masks, self.ladeco2ade20k, self.area_threshold)
|
94 |
+
|
95 |
+
|
96 |
+
class LadecoOutput:
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
filenames: list[str | Path],
|
101 |
+
masks: torch.Tensor,
|
102 |
+
ladeco2ade: dict[str, tuple[int]],
|
103 |
+
threshold: float,
|
104 |
+
):
|
105 |
+
self.filenames = filenames
|
106 |
+
self.masks = masks
|
107 |
+
self.ladeco2ade: dict[str, tuple[int]] = ladeco2ade
|
108 |
+
self.ade2ladeco: dict[int, str] = {
|
109 |
+
idx: label
|
110 |
+
for label, indices in self.ladeco2ade.items()
|
111 |
+
for idx in indices
|
112 |
+
}
|
113 |
+
self.threshold = threshold
|
114 |
+
|
115 |
+
def visualize(self, level: int) -> list[LadecoVisualization]:
|
116 |
+
return list(self.ivisualize(level))
|
117 |
+
|
118 |
+
def ivisualize(self, level: int) -> Generator[LadecoVisualization, None, None]:
|
119 |
+
colormaps = self.color_map(level)
|
120 |
+
labelnames = [name for name in self.ladeco2ade if name.startswith(f"l{level}")]
|
121 |
+
|
122 |
+
for fname, mask in zip(self.filenames, self.masks):
|
123 |
+
size = mask.shape + (3,) # (H, W, RGB)
|
124 |
+
vis = torch.zeros(size, dtype=torch.uint8)
|
125 |
+
for name in labelnames:
|
126 |
+
for idx in self.ladeco2ade[name]:
|
127 |
+
color = torch.tensor(colormaps[name] * 255, dtype=torch.uint8)
|
128 |
+
vis[mask == idx] = color
|
129 |
+
|
130 |
+
with Image.open(fname) as img:
|
131 |
+
target_size = img.size
|
132 |
+
vis = Image.fromarray(vis.numpy(), mode="RGB").resize(target_size)
|
133 |
+
|
134 |
+
fig, ax = plt.subplots()
|
135 |
+
ax.imshow(vis)
|
136 |
+
ax.axis('off')
|
137 |
+
|
138 |
+
yield LadecoVisualization(filename=str(fname), image=fig)
|
139 |
+
|
140 |
+
def area(self) -> list[dict[str, float | str]]:
|
141 |
+
return list(self.iarea())
|
142 |
+
|
143 |
+
def iarea(self) -> Generator[dict[str, float | str], None, None]:
|
144 |
+
n_label_ADE20k = 150
|
145 |
+
for filename, mask in zip(self.filenames, self.masks):
|
146 |
+
ade_ratios = torch.tensor([(mask == i).count_nonzero() / mask.numel() for i in range(n_label_ADE20k)])
|
147 |
+
#breakpoint()
|
148 |
+
ldc_ratios: dict[str, float] = {
|
149 |
+
label: round(ade_ratios[list(ade_indices)].sum().item(), 4)
|
150 |
+
for label, ade_indices in self.ladeco2ade.items()
|
151 |
+
}
|
152 |
+
ldc_ratios: dict[str, float] = {
|
153 |
+
label: 0 if ratio < self.threshold else ratio
|
154 |
+
for label, ratio in ldc_ratios.items()
|
155 |
+
}
|
156 |
+
others = round(1 - ldc_ratios["l1_nature"] - ldc_ratios["l1_man_made"], 4)
|
157 |
+
nfi = round(ldc_ratios["l1_nature"]/ (ldc_ratios["l1_nature"] + ldc_ratios.get("l1_man_made", 0) + 1e-6), 4)
|
158 |
+
|
159 |
+
yield {
|
160 |
+
"fid": str(filename), **ldc_ratios, "others": others, "LC_NFI": nfi,
|
161 |
+
}
|
162 |
+
|
163 |
+
def color_map(self, level: int) -> dict[str, npt.NDArray[np.float64]]:
|
164 |
+
"returns {'label_name': (R, G, B), ...}, where (R, G, B) in range [0, 1]"
|
165 |
+
labels = [
|
166 |
+
name for name in self.ladeco2ade.keys() if name.startswith(f"l{level}")
|
167 |
+
]
|
168 |
+
if len(labels) == 0:
|
169 |
+
raise RuntimeError(
|
170 |
+
f"LaDeco only has 4 levels in 1, 2, 3, 4. You assigned {level}."
|
171 |
+
)
|
172 |
+
colormap = mpl.colormaps["viridis"].resampled(len(labels)).colors[:, :-1]
|
173 |
+
# [:, :-1]: discard alpha channel
|
174 |
+
return {name: color for name, color in zip(labels, colormap)}
|
175 |
+
|
176 |
+
def color_legend(self, level: int) -> Figure:
|
177 |
+
colors = self.color_map(level)
|
178 |
+
|
179 |
+
match level:
|
180 |
+
case 1:
|
181 |
+
ncols = 1
|
182 |
+
case 2:
|
183 |
+
ncols = 1
|
184 |
+
case 3:
|
185 |
+
ncols = 2
|
186 |
+
case 4:
|
187 |
+
ncols = 5
|
188 |
+
|
189 |
+
cell_width = 212
|
190 |
+
cell_height = 22
|
191 |
+
swatch_width = 48
|
192 |
+
margin = 12
|
193 |
+
|
194 |
+
nrows = math.ceil(len(colors) / ncols)
|
195 |
+
|
196 |
+
width = cell_width * ncols + 2 * margin
|
197 |
+
height = cell_height * nrows + 2 * margin
|
198 |
+
dpi = 72
|
199 |
+
|
200 |
+
fig, ax = plt.subplots(figsize=(width / dpi, height / dpi), dpi=dpi)
|
201 |
+
fig.subplots_adjust(margin/width, margin/height,
|
202 |
+
(width-margin)/width, (height-margin*2)/height)
|
203 |
+
ax.set_xlim(0, cell_width * ncols)
|
204 |
+
ax.set_ylim(cell_height * (nrows-0.5), -cell_height/2.)
|
205 |
+
ax.yaxis.set_visible(False)
|
206 |
+
ax.xaxis.set_visible(False)
|
207 |
+
ax.set_axis_off()
|
208 |
+
|
209 |
+
for i, name in enumerate(colors):
|
210 |
+
row = i % nrows
|
211 |
+
col = i // nrows
|
212 |
+
y = row * cell_height
|
213 |
+
|
214 |
+
swatch_start_x = cell_width * col
|
215 |
+
text_pos_x = cell_width * col + swatch_width + 7
|
216 |
+
|
217 |
+
ax.text(text_pos_x, y, name, fontsize=14,
|
218 |
+
horizontalalignment='left',
|
219 |
+
verticalalignment='center')
|
220 |
+
|
221 |
+
ax.add_patch(
|
222 |
+
Rectangle(xy=(swatch_start_x, y-9), width=swatch_width,
|
223 |
+
height=18, facecolor=colors[name], edgecolor='0.7')
|
224 |
+
)
|
225 |
+
|
226 |
+
ax.set_title(f"LaDeco Color Legend - Level {level}")
|
227 |
+
|
228 |
+
return fig
|
229 |
+
|
230 |
+
|
231 |
+
def _get_ladeco_labels(ade20k: dict[str, int]) -> dict[str, tuple[int]]:
|
232 |
+
labels = {
|
233 |
+
# level 4 labels
|
234 |
+
# under l3_architecture
|
235 |
+
"l4_hovel": (ade20k["hovel, hut, hutch, shack, shanty"],),
|
236 |
+
"l4_building": (ade20k["building"], ade20k["house"]),
|
237 |
+
"l4_skyscraper": (ade20k["skyscraper"],),
|
238 |
+
"l4_tower": (ade20k["tower"],),
|
239 |
+
# under l3_archi_parts
|
240 |
+
"l4_step": (ade20k["step, stair"],),
|
241 |
+
"l4_canopy": (ade20k["awning, sunshade, sunblind"], ade20k["canopy"]),
|
242 |
+
"l4_arcade": (ade20k["arcade machine"],),
|
243 |
+
"l4_door": (ade20k["door"],),
|
244 |
+
"l4_window": (ade20k["window"],),
|
245 |
+
"l4_wall": (ade20k["wall"],),
|
246 |
+
# under l3_roadway
|
247 |
+
"l4_stairway": (ade20k["stairway, staircase"],),
|
248 |
+
"l4_sidewalk": (ade20k["sidewalk, pavement"],),
|
249 |
+
"l4_road": (ade20k["road, route"],),
|
250 |
+
# under l3_furniture
|
251 |
+
"l4_sculpture": (ade20k["sculpture"],),
|
252 |
+
"l4_flag": (ade20k["flag"],),
|
253 |
+
"l4_can": (ade20k["trash can"],),
|
254 |
+
"l4_chair": (ade20k["chair"],),
|
255 |
+
"l4_pot": (ade20k["pot"],),
|
256 |
+
"l4_booth": (ade20k["booth"],),
|
257 |
+
"l4_streetlight": (ade20k["street lamp"],),
|
258 |
+
"l4_bench": (ade20k["bench"],),
|
259 |
+
"l4_fence": (ade20k["fence"],),
|
260 |
+
"l4_table": (ade20k["table"],),
|
261 |
+
# under l3_vehicle
|
262 |
+
"l4_bike": (ade20k["bicycle"],),
|
263 |
+
"l4_motorbike": (ade20k["minibike, motorbike"],),
|
264 |
+
"l4_van": (ade20k["van"],),
|
265 |
+
"l4_truck": (ade20k["truck"],),
|
266 |
+
"l4_bus": (ade20k["bus"],),
|
267 |
+
"l4_car": (ade20k["car"],),
|
268 |
+
# under l3_sign
|
269 |
+
"l4_traffic_sign": (ade20k["traffic light"],),
|
270 |
+
"l4_poster": (ade20k["poster, posting, placard, notice, bill, card"],),
|
271 |
+
"l4_signboard": (ade20k["signboard, sign"],),
|
272 |
+
# under l3_vert_land
|
273 |
+
"l4_rock": (ade20k["rock, stone"],),
|
274 |
+
"l4_hill": (ade20k["hill"],),
|
275 |
+
"l4_mountain": (ade20k["mountain, mount"],),
|
276 |
+
# under l3_hori_land
|
277 |
+
"l4_ground": (ade20k["earth, ground"], ade20k["land, ground, soil"]),
|
278 |
+
"l4_field": (ade20k["field"],),
|
279 |
+
"l4_sand": (ade20k["sand"],),
|
280 |
+
"l4_dirt": (ade20k["dirt track"],),
|
281 |
+
"l4_path": (ade20k["path"],),
|
282 |
+
# under l3_flower
|
283 |
+
"l4_flower": (ade20k["flower"],),
|
284 |
+
# under l3_grass
|
285 |
+
"l4_grass": (ade20k["grass"],),
|
286 |
+
# under l3_shrub
|
287 |
+
"l4_flora": (ade20k["plant"],),
|
288 |
+
# under l3_arbor
|
289 |
+
"l4_tree": (ade20k["tree"],),
|
290 |
+
"l4_palm": (ade20k["palm, palm tree"],),
|
291 |
+
# under l3_hori_water
|
292 |
+
"l4_lake": (ade20k["lake"],),
|
293 |
+
"l4_pool": (ade20k["pool"],),
|
294 |
+
"l4_river": (ade20k["river"],),
|
295 |
+
"l4_sea": (ade20k["sea"],),
|
296 |
+
"l4_water": (ade20k["water"],),
|
297 |
+
# under l3_vert_water
|
298 |
+
"l4_fountain": (ade20k["fountain"],),
|
299 |
+
"l4_waterfall": (ade20k["falls"],),
|
300 |
+
# under l3_human
|
301 |
+
"l4_person": (ade20k["person"],),
|
302 |
+
# under l3_animal
|
303 |
+
"l4_animal": (ade20k["animal"],),
|
304 |
+
# under l3_sky
|
305 |
+
"l4_sky": (ade20k["sky"],),
|
306 |
+
}
|
307 |
+
labels = labels | {
|
308 |
+
# level 3 labels
|
309 |
+
# under l2_landform
|
310 |
+
"l3_hori_land": labels["l4_ground"] + labels["l4_field"] + labels["l4_sand"] + labels["l4_dirt"] + labels["l4_path"],
|
311 |
+
"l3_vert_land": labels["l4_mountain"] + labels["l4_hill"] + labels["l4_rock"],
|
312 |
+
# under l2_vegetation
|
313 |
+
"l3_woody_plant": labels["l4_tree"] + labels["l4_palm"] + labels["l4_flora"],
|
314 |
+
"l3_herb_plant": labels["l4_grass"],
|
315 |
+
"l3_flower": labels["l4_flower"],
|
316 |
+
# under l2_water
|
317 |
+
"l3_hori_water": labels["l4_water"] + labels["l4_sea"] + labels["l4_river"] + labels["l4_pool"] + labels["l4_lake"],
|
318 |
+
"l3_vert_water": labels["l4_fountain"] + labels["l4_waterfall"],
|
319 |
+
# under l2_bio
|
320 |
+
"l3_human": labels["l4_person"],
|
321 |
+
"l3_animal": labels["l4_animal"],
|
322 |
+
# under l2_sky
|
323 |
+
"l3_sky": labels["l4_sky"],
|
324 |
+
# under l2_archi
|
325 |
+
"l3_architecture": labels["l4_building"] + labels["l4_hovel"] + labels["l4_tower"] + labels["l4_skyscraper"],
|
326 |
+
"l3_archi_parts": labels["l4_wall"] + labels["l4_window"] + labels["l4_door"] + labels["l4_arcade"] + labels["l4_canopy"] + labels["l4_step"],
|
327 |
+
# under l2_street
|
328 |
+
"l3_roadway": labels["l4_road"] + labels["l4_sidewalk"] + labels["l4_stairway"],
|
329 |
+
"l3_furniture": labels["l4_table"] + labels["l4_chair"] + labels["l4_fence"] + labels["l4_bench"] + labels["l4_streetlight"] + labels["l4_booth"] + labels["l4_pot"] + labels["l4_can"] + labels["l4_flag"] + labels["l4_sculpture"],
|
330 |
+
"l3_vehicle": labels["l4_car"] + labels["l4_bus"] + labels["l4_truck"] + labels["l4_van"] + labels["l4_motorbike"] + labels["l4_bike"],
|
331 |
+
"l3_sign": labels["l4_signboard"] + labels["l4_poster"] + labels["l4_traffic_sign"],
|
332 |
+
}
|
333 |
+
labels = labels | {
|
334 |
+
# level 2 labels
|
335 |
+
# under l1_nature
|
336 |
+
"l2_landform": labels["l3_hori_land"] + labels["l3_vert_land"],
|
337 |
+
"l2_vegetation": labels["l3_woody_plant"] + labels["l3_herb_plant"] + labels["l3_flower"],
|
338 |
+
"l2_water": labels["l3_hori_water"] + labels["l3_vert_water"],
|
339 |
+
"l2_bio": labels["l3_human"] + labels["l3_animal"],
|
340 |
+
"l2_sky": labels["l3_sky"],
|
341 |
+
# under l1_man_made
|
342 |
+
"l2_archi": labels["l3_architecture"] + labels["l3_archi_parts"],
|
343 |
+
"l2_street": labels["l3_roadway"] + labels["l3_furniture"] + labels["l3_vehicle"] + labels["l3_sign"],
|
344 |
+
}
|
345 |
+
labels = labels | {
|
346 |
+
# level 1 labels
|
347 |
+
"l1_nature": labels["l2_landform"] + labels["l2_vegetation"] + labels["l2_water"] + labels["l2_bio"] + labels["l2_sky"],
|
348 |
+
"l1_man_made": labels["l2_archi"] + labels["l2_street"],
|
349 |
+
}
|
350 |
+
return labels
|
351 |
+
|
352 |
+
|
353 |
+
if __name__ == "__main__":
|
354 |
+
ldc = Ladeco()
|
355 |
+
image = Path("images") / "canyon_3011_00002354.jpg"
|
356 |
+
out = ldc.predict(image)
|
examples/beach.jpg
ADDED
examples/field.jpg
ADDED
examples/sky.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
+
torch==2.5.1
|
3 |
+
torchvision
|
4 |
+
tokenizers==0.20.3
|
5 |
+
transformers==4.46.2
|
6 |
+
tqdm
|
7 |
+
matplotlib
|
8 |
+
pillow==10.4.0
|
9 |
+
scipy
|
10 |
+
gradio
|