Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
rohankaran
commited on
Commit
•
35d9ec2
1
Parent(s):
b5c1225
Add GPT-4o and GPT-4o-mini integration with NeMo Guardrails
Browse filesImplemented support for GPT-4o and GPT-4o-mini models, including their integration with NeMo Guardrails, and updated model references across the project files. Also added the new library dependence in requirements.txt and improved code formatting for readability.
- app.py +3 -1
- guardrails_models.py +138 -14
- requirements.txt +0 -0
app.py
CHANGED
@@ -451,7 +451,9 @@ with gr.Blocks(
|
|
451 |
|
452 |
with gr.Tab(label="🏆 Leaderboard", elem_id="leaderboard") as leaderboard_tab:
|
453 |
gr.Markdown("## 🏆 Guardrails Leaderboard")
|
454 |
-
rankings = gr.Markdown(
|
|
|
|
|
455 |
# leaderboard_tab.select(get_rankings, None, [rankings])
|
456 |
|
457 |
gr.Markdown(
|
|
|
451 |
|
452 |
with gr.Tab(label="🏆 Leaderboard", elem_id="leaderboard") as leaderboard_tab:
|
453 |
gr.Markdown("## 🏆 Guardrails Leaderboard")
|
454 |
+
rankings = gr.Markdown(
|
455 |
+
"We will launch the guardrails leaderboard once enough votes are collected. Ranking will be calculated based on ELO ratings. Keep playing so that we can collect enough data."
|
456 |
+
)
|
457 |
# leaderboard_tab.select(get_rankings, None, [rankings])
|
458 |
|
459 |
gr.Markdown(
|
guardrails_models.py
CHANGED
@@ -29,7 +29,57 @@ def gpt35_turbo(
|
|
29 |
llm = ChatOpenAI(
|
30 |
temperature=temperature,
|
31 |
max_retries=6,
|
32 |
-
model_name="gpt-3.5-turbo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
34 |
)
|
35 |
history_langchain_format = []
|
@@ -149,7 +199,7 @@ def gpt35_turbo_llamaguard(
|
|
149 |
llm = ChatOpenAI(
|
150 |
temperature=temperature,
|
151 |
max_retries=6,
|
152 |
-
model_name="gpt-3.5-turbo
|
153 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
154 |
)
|
155 |
history_langchain_format = []
|
@@ -294,7 +344,65 @@ def gpt35_turbo_nemoguardrails(
|
|
294 |
rails = LLMRails(
|
295 |
config,
|
296 |
llm=ChatOpenAI(
|
297 |
-
model_name="gpt-3.5-turbo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
temperature=temperature,
|
299 |
max_retries=6,
|
300 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
@@ -402,23 +510,31 @@ def gemini_pro_nemoguardrails(
|
|
402 |
def get_all_models():
|
403 |
return [
|
404 |
{
|
405 |
-
"name": "gpt3.5-turbo
|
406 |
"model": gpt35_turbo,
|
407 |
},
|
408 |
{
|
409 |
-
"name": "
|
410 |
-
"model":
|
411 |
},
|
412 |
{
|
413 |
-
"name": "
|
414 |
-
"model":
|
415 |
},
|
416 |
{
|
417 |
"name": "Gemini-Pro",
|
418 |
"model": gemini_pro,
|
419 |
},
|
420 |
# {
|
421 |
-
# "name": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
# "model": gpt35_turbo_llamaguard,
|
423 |
# },
|
424 |
# {
|
@@ -434,21 +550,29 @@ def get_all_models():
|
|
434 |
# "model": gemini_pro_llamaguard,
|
435 |
# },
|
436 |
{
|
437 |
-
"name": "gpt3.5-turbo
|
438 |
"model": gpt35_turbo_nemoguardrails,
|
439 |
},
|
440 |
{
|
441 |
-
"name": "
|
442 |
-
"model":
|
443 |
},
|
444 |
{
|
445 |
-
"name": "
|
446 |
-
"model":
|
447 |
},
|
448 |
{
|
449 |
"name": "Gemini-Pro + NeMo Guardrails",
|
450 |
"model": gemini_pro_nemoguardrails,
|
451 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
]
|
453 |
|
454 |
|
|
|
29 |
llm = ChatOpenAI(
|
30 |
temperature=temperature,
|
31 |
max_retries=6,
|
32 |
+
model_name="gpt-3.5-turbo",
|
33 |
+
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
34 |
+
)
|
35 |
+
history_langchain_format = []
|
36 |
+
history_langchain_format.append(SystemMessage(system_prompt))
|
37 |
+
for human, ai in history:
|
38 |
+
history_langchain_format.append(HumanMessage(human))
|
39 |
+
if ai:
|
40 |
+
history_langchain_format.append(AIMessage(ai))
|
41 |
+
|
42 |
+
ai_message = llm.stream(history_langchain_format)
|
43 |
+
for message in ai_message:
|
44 |
+
yield message.content
|
45 |
+
|
46 |
+
|
47 |
+
def gpt4o(
|
48 |
+
history: List[List[Optional[str]]],
|
49 |
+
system_prompt: str,
|
50 |
+
temperature: float = 1,
|
51 |
+
top_p: float = 0.9,
|
52 |
+
max_output_tokens: int = 2048,
|
53 |
+
):
|
54 |
+
llm = ChatOpenAI(
|
55 |
+
temperature=temperature,
|
56 |
+
max_retries=6,
|
57 |
+
model_name="gpt-4o",
|
58 |
+
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
59 |
+
)
|
60 |
+
history_langchain_format = []
|
61 |
+
history_langchain_format.append(SystemMessage(system_prompt))
|
62 |
+
for human, ai in history:
|
63 |
+
history_langchain_format.append(HumanMessage(human))
|
64 |
+
if ai:
|
65 |
+
history_langchain_format.append(AIMessage(ai))
|
66 |
+
|
67 |
+
ai_message = llm.stream(history_langchain_format)
|
68 |
+
for message in ai_message:
|
69 |
+
yield message.content
|
70 |
+
|
71 |
+
|
72 |
+
def gpt4o_mini(
|
73 |
+
history: List[List[Optional[str]]],
|
74 |
+
system_prompt: str,
|
75 |
+
temperature: float = 1,
|
76 |
+
top_p: float = 0.9,
|
77 |
+
max_output_tokens: int = 2048,
|
78 |
+
):
|
79 |
+
llm = ChatOpenAI(
|
80 |
+
temperature=temperature,
|
81 |
+
max_retries=6,
|
82 |
+
model_name="gpt-4o-mini",
|
83 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
84 |
)
|
85 |
history_langchain_format = []
|
|
|
199 |
llm = ChatOpenAI(
|
200 |
temperature=temperature,
|
201 |
max_retries=6,
|
202 |
+
model_name="gpt-3.5-turbo",
|
203 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
204 |
)
|
205 |
history_langchain_format = []
|
|
|
344 |
rails = LLMRails(
|
345 |
config,
|
346 |
llm=ChatOpenAI(
|
347 |
+
model_name="gpt-3.5-turbo",
|
348 |
+
temperature=temperature,
|
349 |
+
max_retries=6,
|
350 |
+
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
351 |
+
),
|
352 |
+
)
|
353 |
+
completion = rails.generate(messages=messages)
|
354 |
+
response = completion.get("content", "")
|
355 |
+
for message in response:
|
356 |
+
yield message
|
357 |
+
|
358 |
+
|
359 |
+
def gpt4o_nemoguardrails(
|
360 |
+
history: List[List[str]],
|
361 |
+
system_prompt: str,
|
362 |
+
temperature: float = 1,
|
363 |
+
top_p: float = 0.9,
|
364 |
+
max_output_tokens: int = 2048,
|
365 |
+
):
|
366 |
+
messages = []
|
367 |
+
messages.append({"role": "system", "content": system_prompt})
|
368 |
+
for human, ai in history:
|
369 |
+
messages.append({"role": "user", "content": human})
|
370 |
+
if ai:
|
371 |
+
messages.append({"role": "assistant", "content": ai})
|
372 |
+
config = RailsConfig.from_path("./nemoguardrails_config")
|
373 |
+
rails = LLMRails(
|
374 |
+
config,
|
375 |
+
llm=ChatOpenAI(
|
376 |
+
model_name="gpt-4o",
|
377 |
+
temperature=temperature,
|
378 |
+
max_retries=6,
|
379 |
+
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
380 |
+
),
|
381 |
+
)
|
382 |
+
completion = rails.generate(messages=messages)
|
383 |
+
response = completion.get("content", "")
|
384 |
+
for message in response:
|
385 |
+
yield message
|
386 |
+
|
387 |
+
|
388 |
+
def gpt4o_mini_nemoguardrails(
|
389 |
+
history: List[List[str]],
|
390 |
+
system_prompt: str,
|
391 |
+
temperature: float = 1,
|
392 |
+
top_p: float = 0.9,
|
393 |
+
max_output_tokens: int = 2048,
|
394 |
+
):
|
395 |
+
messages = []
|
396 |
+
messages.append({"role": "system", "content": system_prompt})
|
397 |
+
for human, ai in history:
|
398 |
+
messages.append({"role": "user", "content": human})
|
399 |
+
if ai:
|
400 |
+
messages.append({"role": "assistant", "content": ai})
|
401 |
+
config = RailsConfig.from_path("./nemoguardrails_config")
|
402 |
+
rails = LLMRails(
|
403 |
+
config,
|
404 |
+
llm=ChatOpenAI(
|
405 |
+
model_name="gpt-4o-mini",
|
406 |
temperature=temperature,
|
407 |
max_retries=6,
|
408 |
metadata={"top_p": top_p, "max_output_tokens": max_output_tokens},
|
|
|
510 |
def get_all_models():
|
511 |
return [
|
512 |
{
|
513 |
+
"name": "gpt3.5-turbo",
|
514 |
"model": gpt35_turbo,
|
515 |
},
|
516 |
{
|
517 |
+
"name": "gpt4o",
|
518 |
+
"model": gpt4o,
|
519 |
},
|
520 |
{
|
521 |
+
"name": "gpt4o-mini",
|
522 |
+
"model": gpt4o_mini,
|
523 |
},
|
524 |
{
|
525 |
"name": "Gemini-Pro",
|
526 |
"model": gemini_pro,
|
527 |
},
|
528 |
# {
|
529 |
+
# "name": "Llama-2-70b-chat-hf",
|
530 |
+
# "model": llama70B,
|
531 |
+
# },
|
532 |
+
# {
|
533 |
+
# "name": "Mixtral-8x7B-Instruct-v0.1",
|
534 |
+
# "model": mixtral7x8,
|
535 |
+
# }, "model": gemini_pro,
|
536 |
+
# {
|
537 |
+
# "name": "gpt3.5-turbo + Llama Guard",
|
538 |
# "model": gpt35_turbo_llamaguard,
|
539 |
# },
|
540 |
# {
|
|
|
550 |
# "model": gemini_pro_llamaguard,
|
551 |
# },
|
552 |
{
|
553 |
+
"name": "gpt3.5-turbo + NeMo Guardrails",
|
554 |
"model": gpt35_turbo_nemoguardrails,
|
555 |
},
|
556 |
{
|
557 |
+
"name": "gpt4o + NeMo Guardrails",
|
558 |
+
"model": gpt4o_nemoguardrails,
|
559 |
},
|
560 |
{
|
561 |
+
"name": "gpt4o-mini + NeMo Guardrails",
|
562 |
+
"model": gpt4o_mini_nemoguardrails,
|
563 |
},
|
564 |
{
|
565 |
"name": "Gemini-Pro + NeMo Guardrails",
|
566 |
"model": gemini_pro_nemoguardrails,
|
567 |
},
|
568 |
+
# {
|
569 |
+
# "name": "Llama-2-70b-chat-hf + NeMo Guardrails",
|
570 |
+
# "model": llama70B_nemoguardrails,
|
571 |
+
# },
|
572 |
+
# {
|
573 |
+
# "name": "Mixtral-8x7B-Instruct-v0.1 + NeMo Guardrails",
|
574 |
+
# "model": mixtral7x8_nemoguardrails,
|
575 |
+
# },
|
576 |
]
|
577 |
|
578 |
|
requirements.txt
CHANGED
Binary files a/requirements.txt and b/requirements.txt differ
|
|