|
import os |
|
import json |
|
import uvicorn |
|
import torch |
|
from fastapi import FastAPI, HTTPException, UploadFile, File, Depends, BackgroundTasks, Request, status |
|
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse, HTMLResponse |
|
from pydantic import BaseModel, validator, Field, root_validator, EmailStr, constr |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
StoppingCriteriaList, |
|
pipeline, |
|
AutoProcessor, |
|
AutoModelForImageClassification, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSpeechSeq2Seq, |
|
AutoModelForImageSegmentation, |
|
AutoFeatureExtractor, |
|
AutoModelForTokenClassification, |
|
AutoModelForMaskedLM, |
|
AutoModelForObjectDetection, |
|
AutoImageProcessor, |
|
) |
|
from io import BytesIO |
|
import boto3 |
|
from botocore.exceptions import ClientError |
|
from huggingface_hub import snapshot_download |
|
import tempfile |
|
import hashlib |
|
from PIL import Image |
|
from typing import Optional, List, Union, Dict, Any |
|
import uuid |
|
import logging |
|
from fastapi.exceptions import RequestValidationError |
|
from passlib.context import CryptContext |
|
from jose import JWTError, jwt |
|
from datetime import datetime, timedelta |
|
from fastapi.staticfiles import StaticFiles |
|
from fastapi.templating import Jinja2Templates |
|
from fastapi.middleware.gzip import GZipMiddleware |
|
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer, OAuth2PasswordRequestForm |
|
from starlette.middleware.cors import CORSMiddleware |
|
import asyncpg |
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s') |
|
logger = logging.getLogger(__name__) |
|
|
|
SECRET_KEY = os.getenv("SECRET_KEY") |
|
if not SECRET_KEY: |
|
raise ValueError("SECRET_KEY must be set.") |
|
ALGORITHM = "HS256" |
|
ACCESS_TOKEN_EXPIRE_MINUTES = 30 |
|
|
|
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") |
|
|
|
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") |
|
API_KEY = os.getenv("API_KEY") |
|
api_key_header = APIKeyHeader(name="X-API-Key") |
|
|
|
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") |
|
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") |
|
AWS_REGION = os.getenv("AWS_REGION") |
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") |
|
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") |
|
TEMP_DIR = "/tmp" |
|
STATIC_DIR = "static" |
|
TEMPLATES = Jinja2Templates(directory="templates") |
|
DATABASE_URL = os.getenv("DATABASE_URL") |
|
|
|
app = FastAPI() |
|
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") |
|
app.add_middleware(GZipMiddleware) |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
class User(BaseModel): |
|
username: constr(min_length=3, max_length=50) |
|
email: EmailStr |
|
password: constr(min_length=8) |
|
|
|
class GenerateRequest(BaseModel): |
|
model_id: str |
|
input_text: Optional[str] = Field(None) |
|
task_type: str = Field(...) |
|
temperature: float = 1.0 |
|
max_new_tokens: int = 200 |
|
stream: bool = True |
|
top_p: float = 1.0 |
|
top_k: int = 50 |
|
repetition_penalty: float = 1.0 |
|
num_return_sequences: int = 1 |
|
do_sample: bool = True |
|
chunk_delay: float = 0.0 |
|
stop_sequences: List[str] = [] |
|
image_file: Optional[UploadFile] = None |
|
source_language: Optional[str] = None |
|
target_language: Optional[str] = None |
|
context: Optional[str] = None |
|
audio_file: Optional[UploadFile] = None |
|
raw_input: Optional[Union[str, bytes]] = None |
|
masked_text: Optional[str] = None |
|
mask_image: Optional[UploadFile] = None |
|
low_res_image: Optional[UploadFile] = None |
|
|
|
@validator('task_type') |
|
def validate_task_type(cls, value): |
|
allowed_types = [ |
|
"text", |
|
"image", |
|
"audio", |
|
"video", |
|
"classification", |
|
"translation", |
|
"question-answering", |
|
"speech-to-text", |
|
"text-to-speech", |
|
"image-segmentation", |
|
"feature-extraction", |
|
"token-classification", |
|
"fill-mask", |
|
"image-inpainting", |
|
"image-super-resolution", |
|
"object-detection", |
|
"image-captioning", |
|
"audio-transcription", |
|
"summarization", |
|
] |
|
if value not in allowed_types: |
|
raise ValueError(f"Invalid task_type. Allowed types are: {allowed_types}") |
|
return value |
|
|
|
@root_validator(pre=True) |
|
def check_input(cls, values): |
|
task_type = values.get("task_type") |
|
if task_type == "text" and values.get("input_text") is None: |
|
raise ValueError("input_text is required for text generation.") |
|
elif task_type == "speech-to-text" and values.get("audio_file") is None: |
|
raise ValueError("audio_file is required for speech-to-text.") |
|
elif task_type == "classification" and values.get("image_file") is None: |
|
raise ValueError("image_file is required for image classification.") |
|
elif task_type == "image-segmentation" and values.get("image_file") is None: |
|
raise ValueError("image_file is required for image segmentation.") |
|
elif task_type == "feature-extraction" and values.get("raw_input") is None: |
|
raise ValueError("raw_input is required for feature extraction.") |
|
elif task_type == "fill-mask" and values.get("masked_text") is None: |
|
raise ValueError("masked_text is required for fill-mask.") |
|
elif task_type == "image-inpainting" and (values.get("image_file") is None or values.get("mask_image") is None): |
|
raise ValueError("image_file and mask_image are required for image inpainting.") |
|
elif task_type == "image-super-resolution" and values.get("low_res_image") is None: |
|
raise ValueError("low_res_image is required for image super-resolution.") |
|
return values |
|
|
|
|
|
class S3ModelLoader: |
|
def __init__(self, bucket_name, aws_access_key_id, aws_secret_access_key, aws_region): |
|
self.bucket_name = bucket_name |
|
self.s3 = boto3.client( |
|
's3', |
|
aws_access_key_id=aws_access_key_id, |
|
aws_secret_access_key=aws_secret_access_key, |
|
region_name=aws_region |
|
) |
|
|
|
def _get_s3_uri(self, model_name): |
|
return f"{self.bucket_name}/{model_name.replace('/', '-')}" |
|
|
|
def load_model_and_tokenizer(self, model_name, task_type): |
|
s3_uri = self._get_s3_uri(model_name) |
|
try: |
|
self.s3.head_object(Bucket=self.bucket_name, Key=f'{s3_uri}/config.json') |
|
except ClientError as e: |
|
if e.response['Error']['Code'] == '404': |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN, cache_dir=tmpdir) |
|
self._upload_model_to_s3(model_path, s3_uri) |
|
else: |
|
raise HTTPException(status_code=500, detail=f"Error accessing S3: {e}") |
|
return self._load_from_s3(s3_uri, task_type) |
|
|
|
def _upload_model_to_s3(self, model_path, s3_uri): |
|
for root, _, files in os.walk(model_path): |
|
for file in files: |
|
local_path = os.path.join(root, file) |
|
s3_path = os.path.join(s3_uri, os.path.relpath(local_path, model_path)) |
|
self.s3.upload_file(local_path, self.bucket_name, s3_path) |
|
|
|
def _load_from_s3(self, s3_uri, task_type): |
|
with tempfile.TemporaryDirectory() as tmpdir: |
|
model_path = os.path.join(tmpdir, s3_uri) |
|
os.makedirs(model_path, exist_ok=True) |
|
self.s3.download_file(self.bucket_name, f"{s3_uri}/config.json", os.path.join(model_path, "config.json")) |
|
if task_type == "text": |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
if tokenizer.eos_token_id is None: |
|
tokenizer.eos_token_id = tokenizer.pad_token_id |
|
return {"model": model, "tokenizer": tokenizer, "pad_token_id": tokenizer.pad_token_id, "eos_token_id": tokenizer.eos_token_id} |
|
elif task_type in ["image", "audio", "video"]: |
|
processor = AutoProcessor.from_pretrained(model_path) |
|
pipeline_function = pipeline(task_type, model=model_path, device=0 if torch.cuda.is_available() else -1, processor=processor) |
|
return {"pipeline": pipeline_function} |
|
elif task_type == "classification": |
|
model = AutoModelForImageClassification.from_pretrained(model_path) |
|
processor = AutoProcessor.from_pretrained(model_path) |
|
return {"model": model, "processor": processor} |
|
elif task_type == "translation": |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
return {"model": model, "tokenizer": tokenizer} |
|
elif task_type == "question-answering": |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
return {"model": model, "tokenizer": tokenizer} |
|
elif task_type == "speech-to-text": |
|
model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "text-to-speech": |
|
model = pipeline("text-to-speech", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "image-segmentation": |
|
model = pipeline("image-segmentation", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "feature-extraction": |
|
feature_extractor = AutoFeatureExtractor.from_pretrained(model_path) |
|
return {"feature_extractor": feature_extractor} |
|
elif task_type == "token-classification": |
|
model = AutoModelForTokenClassification.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
return {"model": model, "tokenizer": tokenizer} |
|
elif task_type == "fill-mask": |
|
model = AutoModelForMaskedLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
return {"model": model, "tokenizer": tokenizer} |
|
elif task_type == "image-inpainting": |
|
model = pipeline("image-inpainting", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "image-super-resolution": |
|
model = pipeline("image-super-resolution", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "object-detection": |
|
model = pipeline("object-detection", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
image_processor = AutoImageProcessor.from_pretrained(model_path) |
|
return {"pipeline": model, "image_processor": image_processor} |
|
elif task_type == "image-captioning": |
|
model = pipeline("image-captioning", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "audio-transcription": |
|
model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
return {"pipeline": model} |
|
elif task_type == "summarization": |
|
model = pipeline("summarization", model=model_path, device=0 if torch.cuda.is_available() else -1) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
return {"model": model, "tokenizer": tokenizer} |
|
else: |
|
raise ValueError("Unsupported task type") |
|
|
|
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay): |
|
try: |
|
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True).to(device) |
|
input_length = encoded_input["input_ids"].shape[1] |
|
max_length = model.config.max_length |
|
remaining_tokens = max_length - input_length |
|
if remaining_tokens <= 0: |
|
yield "" |
|
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens) |
|
def stop_criteria(input_ids, scores): |
|
decoded_output = tokenizer.decode(input_ids[0][-1], skip_special_tokens=True) |
|
return decoded_output in stop_sequences |
|
stopping_criteria = StoppingCriteriaList([stop_criteria]) |
|
outputs = model.generate( |
|
**encoded_input, |
|
do_sample=generation_config.do_sample, |
|
max_new_tokens=generation_config.max_new_tokens, |
|
temperature=generation_config.temperature, |
|
top_p=generation_config.top_p, |
|
top_k=generation_config.top_k, |
|
repetition_penalty=generation_config.repetition_penalty, |
|
num_return_sequences=generation_config.num_return_sequences, |
|
stopping_criteria=stopping_criteria, |
|
output_scores=True, |
|
return_dict_in_generate=True |
|
) |
|
for output in outputs.sequences: |
|
for token_id in output: |
|
token = tokenizer.decode(token_id, skip_special_tokens=True) |
|
yield token |
|
except Exception as e: |
|
yield f"Error during text generation: {e}" |
|
|
|
|
|
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION) |
|
|
|
def get_model_data(request: GenerateRequest): |
|
return model_loader.load_model_and_tokenizer(request.model_id, request.task_type) |
|
|
|
async def verify_api_key(api_key: str = Depends(api_key_header)): |
|
if api_key != API_KEY: |
|
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API Key") |
|
|
|
@app.post("/generate", dependencies=[Depends(verify_api_key)]) |
|
async def generate(request: GenerateRequest, background_tasks: BackgroundTasks, model_data=Depends(get_model_data)): |
|
try: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
if request.task_type == "text": |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
generation_config = GenerationConfig( |
|
temperature=request.temperature, |
|
max_new_tokens=request.max_new_tokens, |
|
top_p=request.top_p, |
|
top_k=request.top_k, |
|
repetition_penalty=request.repetition_penalty, |
|
do_sample=request.do_sample, |
|
num_return_sequences=request.num_return_sequences, |
|
) |
|
return StreamingResponse(stream_text(model, tokenizer, request.input_text, generation_config, request.stop_sequences, device, request.chunk_delay), media_type="text/plain") |
|
elif request.task_type in ["image", "audio", "video"]: |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
result = pipeline_func(request.input_text) |
|
if request.task_type == "image": |
|
image = result[0] |
|
img_byte_arr = BytesIO() |
|
image.save(img_byte_arr, format="PNG") |
|
img_byte_arr.seek(0) |
|
return StreamingResponse(img_byte_arr, media_type="image/png") |
|
elif request.task_type == "audio": |
|
audio = result[0] |
|
audio_byte_arr = BytesIO() |
|
audio.save(audio_byte_arr, format="wav") |
|
audio_byte_arr.seek(0) |
|
return StreamingResponse(audio_byte_arr, media_type="audio/wav") |
|
elif request.task_type == "video": |
|
video = result[0] |
|
video_byte_arr = BytesIO() |
|
video.save(video_byte_arr, format="mp4") |
|
video_byte_arr.seek(0) |
|
return StreamingResponse(video_byte_arr, media_type="video/mp4") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error processing {request.task_type}: {e}") |
|
elif request.task_type == "classification": |
|
if request.image_file is None: |
|
raise HTTPException(status_code=400, detail="Image file is required for classification.") |
|
contents = await request.image_file.read() |
|
image = Image.open(BytesIO(contents)).convert("RGB") |
|
model = model_data["model"].to(device) |
|
processor = model_data["processor"] |
|
inputs = processor(images=image, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predicted_class_idx = outputs.logits.argmax().item() |
|
predicted_class = model.config.id2label[predicted_class_idx] |
|
return JSONResponse({"predicted_class": predicted_class}) |
|
elif request.task_type == "translation": |
|
if request.source_language is None or request.target_language is None: |
|
raise HTTPException(status_code=400, detail="Source and target languages are required for translation.") |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
inputs = tokenizer(request.input_text, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs) |
|
translation = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return JSONResponse({"translation": translation}) |
|
elif request.task_type == "question-answering": |
|
if request.context is None: |
|
raise HTTPException(status_code=400, detail="Context is required for question answering.") |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
inputs = tokenizer(question=request.input_text, context=request.context, return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
answer_start = torch.argmax(outputs.start_logits) |
|
answer_end = torch.argmax(outputs.end_logits) + 1 |
|
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])) |
|
return JSONResponse({"answer": answer}) |
|
elif request.task_type == "speech-to-text": |
|
if request.audio_file is None: |
|
raise HTTPException(status_code=400, detail="Audio file is required for speech-to-text.") |
|
contents = await request.audio_file.read() |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"] |
|
return JSONResponse({"transcription": transcription}) |
|
except Exception as e: |
|
logger.exception(f"Error during speech-to-text: {e}") |
|
raise HTTPException(status_code=500, detail=f"Error during speech-to-text: {str(e)}") from e |
|
elif request.task_type == "text-to-speech": |
|
if not request.input_text: |
|
raise HTTPException(status_code=400, detail="Input text is required for text-to-speech.") |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
audio = pipeline_func(request.input_text)[0] |
|
file_path = os.path.join(TEMP_DIR, f"{uuid.uuid4()}.wav") |
|
audio.save(file_path) |
|
background_tasks.add_task(os.remove, file_path) |
|
return FileResponse(file_path, media_type="audio/wav") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during text-to-speech: {str(e)}") |
|
elif request.task_type == "image-segmentation": |
|
if request.image_file is None: |
|
raise HTTPException(status_code=400, detail="Image file is required for image segmentation.") |
|
contents = await request.image_file.read() |
|
image = Image.open(BytesIO(contents)).convert("RGB") |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
result = pipeline_func(image) |
|
mask = result[0]['mask'] |
|
mask_byte_arr = BytesIO() |
|
mask.save(mask_byte_arr, format="PNG") |
|
mask_byte_arr.seek(0) |
|
return StreamingResponse(mask_byte_arr, media_type="image/png") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during image segmentation: {e}") |
|
elif request.task_type == "feature-extraction": |
|
if request.raw_input is None: |
|
raise HTTPException(status_code=400, detail="raw_input is required for feature extraction.") |
|
feature_extractor = model_data["feature_extractor"] |
|
try: |
|
if isinstance(request.raw_input, str): |
|
inputs = feature_extractor(text=request.raw_input, return_tensors="pt") |
|
elif isinstance(request.raw_input, bytes): |
|
image = Image.open(BytesIO(request.raw_input)).convert("RGB") |
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
else: |
|
raise ValueError("Unsupported raw_input type.") |
|
features = inputs.pixel_values |
|
return JSONResponse({"features": features.tolist()}) |
|
except Exception as fe: |
|
raise HTTPException(status_code=400, detail=f"Error during feature extraction: {fe}") |
|
elif request.task_type == "token-classification": |
|
if request.input_text is None: |
|
raise HTTPException(status_code=400, detail="Input text is required for token classification.") |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
inputs = tokenizer(request.input_text, return_tensors="pt", padding=True, truncation=True) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
predictions = outputs.logits.argmax(dim=-1) |
|
predicted_labels = [model.config.id2label[label_id] for label_id in predictions[0].tolist()] |
|
return JSONResponse({"predicted_labels": predicted_labels}) |
|
elif request.task_type == "fill-mask": |
|
if request.masked_text is None: |
|
raise HTTPException(status_code=400, detail="masked_text is required for fill-mask.") |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
inputs = tokenizer(request.masked_text, return_tensors="pt") |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
masked_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1] |
|
predicted_token_id = torch.argmax(logits[0, masked_index]) |
|
predicted_token = tokenizer.decode(predicted_token_id) |
|
return JSONResponse({"predicted_token": predicted_token}) |
|
elif request.task_type == "image-inpainting": |
|
if request.image_file is None or request.mask_image is None: |
|
raise HTTPException(status_code=400, detail="image_file and mask_image are required for image inpainting.") |
|
image_contents = await request.image_file.read() |
|
mask_contents = await request.mask_image.read() |
|
image = Image.open(BytesIO(image_contents)).convert("RGB") |
|
mask = Image.open(BytesIO(mask_contents)).convert("L") |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
result = pipeline_func(image, mask) |
|
inpainted_image = result[0] |
|
img_byte_arr = BytesIO() |
|
inpainted_image.save(img_byte_arr, format="PNG") |
|
img_byte_arr.seek(0) |
|
return StreamingResponse(img_byte_arr, media_type="image/png") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during image inpainting: {e}") |
|
elif request.task_type == "image-super-resolution": |
|
if request.low_res_image is None: |
|
raise HTTPException(status_code=400, detail="low_res_image is required for image super-resolution.") |
|
contents = await request.low_res_image.read() |
|
image = Image.open(BytesIO(contents)).convert("RGB") |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
result = pipeline_func(image) |
|
upscaled_image = result[0] |
|
img_byte_arr = BytesIO() |
|
upscaled_image.save(img_byte_arr, format="PNG") |
|
img_byte_arr.seek(0) |
|
return StreamingResponse(img_byte_arr, media_type="image/png") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during image super-resolution: {e}") |
|
elif request.task_type == "object-detection": |
|
if request.image_file is None: |
|
raise HTTPException(status_code=400, detail="Image file is required for object detection.") |
|
contents = await request.image_file.read() |
|
image = Image.open(BytesIO(contents)).convert("RGB") |
|
pipeline_func = model_data["pipeline"] |
|
image_processor = model_data["image_processor"] |
|
inputs = image_processor(images=image, return_tensors="pt") |
|
with torch.no_grad(): |
|
try: |
|
outputs = pipeline_func(image) |
|
detections = outputs |
|
return JSONResponse({"detections": detections}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during object detection: {e}") |
|
elif request.task_type == "image-captioning": |
|
if request.image_file is None: |
|
raise HTTPException(status_code=400, detail="Image file is required for image captioning.") |
|
contents = await request.image_file.read() |
|
image = Image.open(BytesIO(contents)).convert("RGB") |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
caption = pipeline_func(image)[0]['generated_text'] |
|
return JSONResponse({"caption": caption}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during image captioning: {e}") |
|
elif request.task_type == "audio-transcription": |
|
if request.audio_file is None: |
|
raise HTTPException(status_code=400, detail="Audio file is required for audio transcription.") |
|
contents = await request.audio_file.read() |
|
pipeline_func = model_data["pipeline"] |
|
try: |
|
transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"] |
|
return JSONResponse({"transcription": transcription}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during audio transcription: {str(e)}") |
|
elif request.task_type == "summarization": |
|
if request.input_text is None: |
|
raise HTTPException(status_code=400, detail="Input text is required for summarization.") |
|
model = model_data["model"].to(device) |
|
tokenizer = model_data["tokenizer"] |
|
inputs = tokenizer(request.input_text, return_tensors="pt", truncation=True, max_length=512) |
|
with torch.no_grad(): |
|
try: |
|
outputs = model.generate(**inputs) |
|
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return JSONResponse({"summary": summary}) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=f"Error during summarization: {e}") |
|
else: |
|
raise HTTPException(status_code=500, detail=f"Unsupported task type") |
|
except Exception as e: |
|
logger.exception(f"Internal server error: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") |
|
|
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
return {"status": "healthy"} |
|
|
|
class Token(BaseModel): |
|
access_token: str |
|
token_type: str |
|
|
|
async def get_db(): |
|
async with asyncpg.create_pool(DATABASE_URL) as pool: |
|
async with pool.acquire() as conn: |
|
yield conn |
|
|
|
async def authenticate_user(username, password, conn): |
|
row = await conn.fetchrow("SELECT * FROM users WHERE username = $1", username) |
|
if row is not None and pwd_context.verify(password, row["hashed_password"]): |
|
return {"username": username} |
|
return None |
|
|
|
@app.post("/token", response_model=Token) |
|
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), conn = Depends(get_db)): |
|
user = await authenticate_user(form_data.username, form_data.password, conn) |
|
if not user: |
|
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"}) |
|
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) |
|
access_token = create_access_token(data={"sub": user["username"]}, expires_delta=access_token_expires) |
|
return {"access_token": access_token, "token_type": "bearer"} |
|
|
|
|
|
async def get_current_user(token: str = Depends(oauth2_scheme), conn = Depends(get_db)): |
|
credentials_exception = HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"}) |
|
try: |
|
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) |
|
username: str = payload.get("sub") |
|
if username is None: |
|
raise credentials_exception |
|
user = await conn.fetchrow("SELECT * FROM users WHERE username = $1", username) |
|
if user is None: |
|
raise credentials_exception |
|
return username |
|
except JWTError: |
|
raise credentials_exception |
|
|
|
@app.post("/register", response_model=User, status_code=status.HTTP_201_CREATED) |
|
async def create_user(user: User, conn = Depends(get_db)): |
|
hashed_password = pwd_context.hash(user.password) |
|
try: |
|
await conn.execute("INSERT INTO users (username, email, hashed_password) VALUES ($1, $2, $3)", user.username, user.email, hashed_password) |
|
return user |
|
except asyncpg.exceptions.UniqueViolationError: |
|
raise HTTPException(status_code=400, detail="Username or email already exists") |
|
|
|
|
|
@app.put("/users/{username}", response_model=User, dependencies=[Depends(get_current_user)]) |
|
async def update_user_data(username: str, user: User, conn = Depends(get_db)): |
|
hashed_password = pwd_context.hash(user.password) |
|
try: |
|
await conn.execute("UPDATE users SET email = $1, hashed_password = $2 WHERE username = $3", user.email, hashed_password, username) |
|
return user |
|
except Exception as e: |
|
logger.error(f"Error updating user: {e}") |
|
raise HTTPException(status_code=500, detail="Error updating user.") |
|
|
|
|
|
@app.delete("/users/{username}", dependencies=[Depends(get_current_user)]) |
|
async def delete_user_account(username: str, conn = Depends(get_db)): |
|
try: |
|
await conn.execute("DELETE FROM users WHERE username = $1", username) |
|
return JSONResponse({"message": "User deleted successfully."}, status_code=200) |
|
except Exception as e: |
|
logger.error(f"Error deleting user: {e}") |
|
raise HTTPException(status_code=500, detail="Error deleting user.") |
|
|
|
|
|
@app.get("/users", dependencies=[Depends(get_current_user)]) |
|
async def get_all_users_route(conn = Depends(get_db)): |
|
rows = await conn.fetch("SELECT username, email FROM users") |
|
return [{"username": row["username"], "email": row["email"]} for row in rows] |
|
|
|
|
|
@app.get("/users/me", dependencies=[Depends(get_current_user)]) # Requires authentication |
|
async def read_users_me(current_user: str = Depends(get_current_user), conn=Depends(get_db)): |
|
user = await conn.fetchrow("SELECT username, email FROM users WHERE username = $1", current_user) |
|
if user: |
|
return {"username": user["username"], "email": user["email"]} |
|
raise HTTPException(status_code=404, detail="User not found") |
|
|
|
|
|
@app.exception_handler(RequestValidationError) |
|
async def validation_exception_handler(request: Request, exc: RequestValidationError): |
|
return JSONResponse( |
|
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, |
|
content=json.dumps({"detail": exc.errors(), "body": exc.body}), |
|
) |
|
|
|
|
|
def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None): |
|
to_encode = data.copy() |
|
if expires_delta: |
|
expire = datetime.utcnow() + expires_delta |
|
else: |
|
expire = datetime.utcnow() + timedelta(minutes=15) |
|
to_encode.update({"exp": expire}) |
|
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) |
|
return encoded_jwt |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |