File size: 15,308 Bytes
7453da0
5ff311b
cbbd024
c657020
9738ed3
5e703c7
 
e42dad1
5ff311b
b16b354
5e703c7
 
b16b354
 
 
e8bcac0
b16b354
 
 
bba094e
 
87edc0b
bba094e
 
 
 
 
e42dad1
bba094e
 
 
 
 
48bc3bb
bba094e
 
 
22bd95b
 
 
 
 
 
500acc7
 
f466d5b
500acc7
 
 
 
b16b354
7125d26
 
540056e
7125d26
 
 
 
 
 
 
 
 
 
 
540056e
7125d26
5301c9c
7125d26
 
 
e42dad1
5301c9c
e42dad1
 
 
5301c9c
99bd104
 
8ec125b
9738ed3
8ec125b
 
c657020
a15b3ce
bf18300
a15b3ce
 
bf18300
a15b3ce
 
bf18300
a15b3ce
8ec125b
540056e
cf39162
0a67e21
 
 
 
 
 
 
 
 
396214f
f83630e
e42dad1
396214f
e42dad1
 
 
 
 
 
 
 
 
 
 
 
396214f
 
 
 
7125d26
 
87edc0b
5e703c7
7125d26
87edc0b
 
 
 
 
 
 
7125d26
 
3540c16
 
7125d26
8f90609
e42dad1
8f90609
e42dad1
 
 
 
8f90609
 
 
 
1c32bc8
 
48bc3bb
1c32bc8
48bc3bb
 
 
 
1c32bc8
 
 
13e8b80
 
 
 
 
 
 
 
 
 
500acc7
 
f466d5b
500acc7
 
de2a554
500acc7
 
 
 
 
 
 
80aa4e5
508045d
 
 
9e731de
 
 
72aa658
508045d
6122bcd
32bf766
cbbd024
aef38d7
 
 
 
455006b
 
26ae92c
32bf766
57faca1
26ae92c
 
 
 
 
 
6122bcd
26ae92c
 
e377751
26ae92c
ac75eb4
26ae92c
 
e377751
 
 
6122bcd
508045d
fc0768e
508045d
 
6122bcd
f7b9ef5
508045d
80aa4e5
 
 
aef38d7
682c6da
 
906ee65
b27e1a3
 
 
ff0b641
b27e1a3
906ee65
e8bcac0
 
b27e1a3
9b70e6e
 
 
682c6da
 
26ae92c
396214f
7125d26
 
 
 
 
fd37796
8f90609
 
 
1c32bc8
 
 
13e8b80
 
 
500acc7
 
1a120b2
e8fd75c
7cc1a9a
8f4dc2d
 
 
8c7194a
8f4dc2d
 
 
 
 
 
fd37796
8f4dc2d
 
 
 
 
 
13e8b80
 
 
500acc7
 
1a120b2
8f4dc2d
 
508045d
72aa658
13e8b80
b9bed89
 
b89ea66
b9bed89
3127104
b9bed89
 
b89ea66
fc13525
 
 
 
c221ac3
b9bed89
 
 
e377751
b9bed89
e377751
b9bed89
72aa658
b9bed89
 
776a974
 
e377751
776a974
 
 
 
 
 
e377751
b16b354
e377751
b16b354
 
 
ad79f38
b16b354
 
13e8b80
ad79f38
500acc7
b16b354
b27e1a3
 
b16b354
e377751
 
 
 
 
 
72aa658
252509d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e377751
776a974
e377751
5bddbaf
7125d26
fc13525
 
5bddbaf
e377751
8f4dc2d
e377751
396214f
 
776a974
e377751
b9bed89
b16b354
 
 
 
 
 
8f4dc2d
 
 
 
 
 
b16b354
b9bed89
 
 
7125d26
906ee65
 
b9bed89
 
5bddbaf
2ef1055
b9bed89
d4d6f23
b9bed89
 
f08467f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import gradio as gr
import os
import spaces
import json
import re
import random
import numpy as np
from gradio_client import Client, handle_file
hf_token = os.environ.get("HF_TOKEN")

MAX_SEED = np.iinfo(np.int32).max

def check_api(model_name):
    if model_name == "MAGNet":
        try :
            client = Client("fffiloni/MAGNet")
            return "api ready"
        except : 
            return "api not ready yet"
    elif model_name == "AudioLDM-2":
        try :
            client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
            return "api ready"
        except : 
            return "api not ready yet"
    elif model_name == "Riffusion":
        try :
            client = Client("fffiloni/spectrogram-to-music")
            return "api ready"
        except : 
            return "api not ready yet"
    elif model_name == "Mustango":
        try :
            client = Client("fffiloni/mustango-API", hf_token=hf_token)
            return "api ready"
        except : 
            return "api not ready yet"
    elif model_name == "MusicGen":
        try :
            client = Client("https://facebook-musicgen.hf.space/")
            return "api ready"
        except : 
            return "api not ready yet"
    elif model_name == "Stable Audio Open":
        try:
            client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
            return "api ready"
        except:
            return "api not ready yet"
    
        
from moviepy.editor import VideoFileClip
from moviepy.audio.AudioClip import AudioClip

def extract_audio(video_in):
    input_video = video_in
    output_audio = 'audio.wav'
    
    # Open the video file and extract the audio
    video_clip = VideoFileClip(input_video)
    audio_clip = video_clip.audio
    
    # Save the audio as a .wav file
    audio_clip.write_audiofile(output_audio, fps=44100)  # Use 44100 Hz as the sample rate for .wav files  
    print("Audio extraction complete.")

    return 'audio.wav'



def get_caption(image_in):
    kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
    kosmos2_result = kosmos2_client.predict(
		image_input=handle_file(image_in),
		text_input="Detailed",
		api_name="/generate_predictions"
    )
    print(f"KOSMOS2 RETURNS: {kosmos2_result}")

    data = kosmos2_result[1]

    # Extract and combine tokens starting from the second element
    sentence = ''.join(item['token'] for item in data[1:])

    # Find the last occurrence of "."
    #last_period_index = full_sentence.rfind('.')

    # Truncate the string up to the last period
    #truncated_caption = full_sentence[:last_period_index + 1]

    # print(truncated_caption)
    #print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
    
    return sentence

def get_caption_from_MD(image_in):
    client = Client("https://vikhyatk-moondream1.hf.space/")
    result = client.predict(
		image_in,	# filepath  in 'image' Image component
		"Describe precisely the image.",	# str  in 'Question' Textbox component
		api_name="/answer_question"
    )
    print(result)
    return result

def get_magnet(prompt):

    client = Client("fffiloni/MAGNet")
    result = client.predict(
        model="facebook/magnet-small-10secs",	# Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium']  in 'Model' Radio component
        model_path="",	# str  in 'Model Path (custom models)' Textbox component
        text=prompt,	# str  in 'Input Text' Textbox component
        temperature=3,	# float  in 'Temperature' Number component
        topp=0.9,	# float  in 'Top-p' Number component
        max_cfg_coef=10,	# float  in 'Max CFG coefficient' Number component
        min_cfg_coef=1,	# float  in 'Min CFG coefficient' Number component
        decoding_steps1=20,	# float  in 'Decoding Steps (stage 1)' Number component
        decoding_steps2=10,	# float  in 'Decoding Steps (stage 2)' Number component
        decoding_steps3=10,	# float  in 'Decoding Steps (stage 3)' Number component
        decoding_steps4=10,	# float  in 'Decoding Steps (stage 4)' Number component
        span_score="prod-stride1 (new!)",	# Literal['max-nonoverlap', 'prod-stride1 (new!)']  in 'Span Scoring' Radio component
        api_name="/predict_full"
    )
    print(result)
    return result[1]

def get_audioldm(prompt):
    client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token)
    seed = random.randint(0, MAX_SEED)
    result = client.predict(
        text=prompt,	# str in 'Input text' Textbox component
        negative_prompt="Low quality.",	# str in 'Negative prompt' Textbox component
        duration=10,	# int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component
        guidance_scale=6.5,	# int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component
        random_seed=seed,	# int | float in 'Seed' Number component
        n_candidates=3,	# int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component
        api_name="/text2audio"
    )
    print(result)
    
    return result

def get_riffusion(prompt):
    client = Client("fffiloni/spectrogram-to-music")
    result = client.predict(
		prompt=prompt,	# str  in 'Musical prompt' Textbox component
		negative_prompt="",	# str  in 'Negative prompt' Textbox component
		audio_input=None,	# filepath  in 'parameter_4' Audio component
		duration=10,	# float (numeric value between 5 and 10) in 'Duration in seconds' Slider component
		api_name="/predict"
    )
    print(result)
    return result[1]

def get_mustango(prompt):
    client = Client("fffiloni/mustango-API", hf_token=hf_token)
    result = client.predict(
		prompt=prompt,	# str  in 'Prompt' Textbox component
		steps=200,	# float (numeric value between 100 and 200) in 'Steps' Slider component
		guidance=6,	# float (numeric value between 1 and 10) in 'Guidance Scale' Slider component
		api_name="/predict"
    )
    print(result)
    return result

def get_musicgen(prompt):
    client = Client("https://facebook-musicgen.hf.space/")
    result = client.predict(
        prompt,	# str  in 'Describe your music' Textbox component
        None,	# str (filepath or URL to file) in 'File' Audio component
        fn_index=0
    )
    print(result)
    return result[1]

def get_stable_audio_open(prompt):
    client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token)
    result = client.predict(
		prompt=prompt,
		seconds_total=10,
		steps=100,
		cfg_scale=7,
		api_name="/predict"
    )
    print(result)
    return result

import re
import torch
from transformers import pipeline

zephyr_model = "HuggingFaceH4/zephyr-7b-beta"
mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1"

pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto")

standard_sys = f"""
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model.

For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description. 
Immediately STOP after that. It should be EXACTLY in this format:
"A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle"
"""

mustango_sys = f"""
You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users.
In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model, you MUST include chords progression.

For example, if a user says, "a painting of three old women having tea party", provide immediately a musical prompt corresponding to the image description. 
Immediately STOP after that. It should be EXACTLY in this format:
"The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor."
"""

@spaces.GPU(enable_queue=True)
def get_musical_prompt(user_prompt, chosen_model):

    """
    if chosen_model == "Mustango" :
        agent_maker_sys = standard_sys
    else :
        agent_maker_sys = standard_sys
    """
    agent_maker_sys = standard_sys
    
    instruction = f"""
<|system|>
{agent_maker_sys}</s>
<|user|>
"""
    
    prompt = f"{instruction.strip()}\n{user_prompt}</s>"    
    outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
    pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>'
    cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL)
    
    print(f"SUGGESTED Musical prompt: {cleaned_text}")
    return cleaned_text.lstrip("\n")

def infer(image_in, chosen_model, api_status):
    if image_in == None :
        raise gr.Error("Please provide an image input")

    if chosen_model == [] :
        raise gr.Error("Please pick a model")

    if api_status == "api not ready yet" :
        raise gr.Error("This model is not ready yet, you can pick another one instead :)")
    
    gr.Info("Getting image caption with Kosmos-2...")
    user_prompt = get_caption(image_in)
    #user_prompt = get_caption_from_MD(image_in)
    
    gr.Info("Building a musical prompt according to the image caption ...")
    musical_prompt = get_musical_prompt(user_prompt, chosen_model)

    if chosen_model == "MAGNet" :
        gr.Info("Now calling MAGNet for music...")
        music_o = get_magnet(musical_prompt)
    elif chosen_model == "AudioLDM-2" :
        gr.Info("Now calling AudioLDM-2 for music...")
        music_o = get_audioldm(musical_prompt)
    elif chosen_model == "Riffusion" :
        gr.Info("Now calling Riffusion for music...")
        music_o = get_riffusion(musical_prompt)
    elif chosen_model == "Mustango" :
        gr.Info("Now calling Mustango for music...")
        music_o = get_mustango(musical_prompt)
    elif chosen_model == "MusicGen" :
        gr.Info("Now calling MusicGen for music...")
        music_o = get_musicgen(musical_prompt)
    elif chosen_model == "Stable Audio Open" :
        gr.Info("Now calling Stable Audio Open for music...")
        music_o = get_stable_audio_open(musical_prompt)
    
    return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o

def retry(chosen_model, caption):
    musical_prompt = caption
    music_o = None

    if chosen_model == "MAGNet" :
        gr.Info("Now calling MAGNet for music...")
        music_o = get_magnet(musical_prompt)
    elif chosen_model == "AudioLDM-2" :
        gr.Info("Now calling AudioLDM-2 for music...")
        music_o = get_audioldm(musical_prompt)
    elif chosen_model == "Riffusion" :
        gr.Info("Now calling Riffusion for music...")
        music_o = get_riffusion(musical_prompt)
    elif chosen_model == "Mustango" :
        gr.Info("Now calling Mustango for music...")
        music_o = get_mustango(musical_prompt)
    elif chosen_model == "MusicGen" :
        gr.Info("Now calling MusicGen for music...")
        music_o = get_musicgen(musical_prompt)
    elif chosen_model == "Stable Audio Open" :
        gr.Info("Now calling Stable Audio Open for music...")
        music_o = get_stable_audio_open(musical_prompt)

    return music_o

demo_title = "Image to Music V2"
description = "Get music from a picture, compare text-to-music models"

css = """
#col-container {
    margin: 0 auto;
    max-width: 980px;
    text-align: left;
}
#inspi-prompt textarea {
    font-size: 20px;
    line-height: 24px;
    font-weight: 600;
}

"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
    
        gr.HTML(f"""
        <h2 style="text-align: center;">{demo_title}</h2>
        <p style="text-align: center;">{description}</p>
        """)
        
        with gr.Row():
            
            with gr.Column():
                image_in = gr.Image(
                    label = "Image reference",
                    type = "filepath",
                    elem_id = "image-in"
                )
                
                with gr.Row():
                    
                    chosen_model = gr.Dropdown(
                        label = "Choose a model",
                        choices = [
                            #"MAGNet",
                            "AudioLDM-2",
                            "Riffusion",
                            "Mustango",
                            #"MusicGen",
                            "Stable Audio Open"
                        ],
                        value = None,
                        filterable = False
                    )
                    
                    check_status = gr.Textbox(
                        label="API status",
                        interactive=False
                    )
                
                submit_btn = gr.Button("Make music from my pic !")

                gr.Examples(
                    examples = [
                        ["examples/ocean_poet.jpeg"],
                        ["examples/jasper_horace.jpeg"],
                        ["examples/summer.jpeg"],
                        ["examples/mona_diner.png"],
                        ["examples/monalisa.png"],
                        ["examples/santa.png"],
                        ["examples/winter_hiking.png"],
                        ["examples/teatime.jpeg"],
                        ["examples/news_experts.jpeg"]
                    ],
                    fn = infer,
                    inputs = [image_in, chosen_model],
                    examples_per_page = 4
                )
            
            with gr.Column():
            
                caption = gr.Textbox(
                    label = "Inspirational musical prompt",
                    interactive = False,
                    elem_id = "inspi-prompt"
                )
                
                retry_btn = gr.Button("Retry with edited prompt", visible=False)
                
                result = gr.Audio(
                    label = "Music"
                )
        

    chosen_model.change(
        fn = check_api,
        inputs = chosen_model,
        outputs = check_status,
        queue = False
    )

    retry_btn.click(
        fn = retry,
        inputs = [chosen_model, caption],
        outputs = [result]
    )
    
    submit_btn.click(
        fn = infer,
        inputs = [
            image_in,
            chosen_model,
            check_status
        ],
        outputs =[
            caption,
            retry_btn,
            result
        ]
    )

demo.queue(max_size=16).launch(show_api=False, show_error=True)