import gradio as gr import os import spaces import json import re import random import numpy as np from gradio_client import Client, handle_file hf_token = os.environ.get("HF_TOKEN") MAX_SEED = np.iinfo(np.int32).max def check_api(model_name): if model_name == "MAGNet": try : client = Client("fffiloni/MAGNet") return "api ready" except : return "api not ready yet" elif model_name == "AudioLDM-2": try : client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token) return "api ready" except : return "api not ready yet" elif model_name == "Riffusion": try : client = Client("fffiloni/spectrogram-to-music") return "api ready" except : return "api not ready yet" elif model_name == "Mustango": try : client = Client("fffiloni/mustango-API", hf_token=hf_token) return "api ready" except : return "api not ready yet" elif model_name == "MusicGen": try : client = Client("https://facebook-musicgen.hf.space/") return "api ready" except : return "api not ready yet" elif model_name == "Stable Audio Open": try: client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token) return "api ready" except: return "api not ready yet" from moviepy.editor import VideoFileClip from moviepy.audio.AudioClip import AudioClip def extract_audio(video_in): input_video = video_in output_audio = 'audio.wav' # Open the video file and extract the audio video_clip = VideoFileClip(input_video) audio_clip = video_clip.audio # Save the audio as a .wav file audio_clip.write_audiofile(output_audio, fps=44100) # Use 44100 Hz as the sample rate for .wav files print("Audio extraction complete.") return 'audio.wav' def get_caption(image_in): kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token) kosmos2_result = kosmos2_client.predict( image_input=handle_file(image_in), text_input="Detailed", api_name="/generate_predictions" ) print(f"KOSMOS2 RETURNS: {kosmos2_result}") data = kosmos2_result[1] # Extract and combine tokens starting from the second element sentence = ''.join(item['token'] for item in data[1:]) # Find the last occurrence of "." #last_period_index = full_sentence.rfind('.') # Truncate the string up to the last period #truncated_caption = full_sentence[:last_period_index + 1] # print(truncated_caption) #print(f"\n—\nIMAGE CAPTION: {truncated_caption}") return sentence def get_caption_from_MD(image_in): client = Client("https://vikhyatk-moondream1.hf.space/") result = client.predict( image_in, # filepath in 'image' Image component "Describe precisely the image.", # str in 'Question' Textbox component api_name="/answer_question" ) print(result) return result def get_magnet(prompt): client = Client("fffiloni/MAGNet") result = client.predict( model="facebook/magnet-small-10secs", # Literal['facebook/magnet-small-10secs', 'facebook/magnet-medium-10secs', 'facebook/magnet-small-30secs', 'facebook/magnet-medium-30secs', 'facebook/audio-magnet-small', 'facebook/audio-magnet-medium'] in 'Model' Radio component model_path="", # str in 'Model Path (custom models)' Textbox component text=prompt, # str in 'Input Text' Textbox component temperature=3, # float in 'Temperature' Number component topp=0.9, # float in 'Top-p' Number component max_cfg_coef=10, # float in 'Max CFG coefficient' Number component min_cfg_coef=1, # float in 'Min CFG coefficient' Number component decoding_steps1=20, # float in 'Decoding Steps (stage 1)' Number component decoding_steps2=10, # float in 'Decoding Steps (stage 2)' Number component decoding_steps3=10, # float in 'Decoding Steps (stage 3)' Number component decoding_steps4=10, # float in 'Decoding Steps (stage 4)' Number component span_score="prod-stride1 (new!)", # Literal['max-nonoverlap', 'prod-stride1 (new!)'] in 'Span Scoring' Radio component api_name="/predict_full" ) print(result) return result[1] def get_audioldm(prompt): client = Client("fffiloni/audioldm2-text2audio-text2music-API", hf_token=hf_token) seed = random.randint(0, MAX_SEED) result = client.predict( text=prompt, # str in 'Input text' Textbox component negative_prompt="Low quality.", # str in 'Negative prompt' Textbox component duration=10, # int | float (numeric value between 5 and 15) in 'Duration (seconds)' Slider component guidance_scale=6.5, # int | float (numeric value between 0 and 7) in 'Guidance scale' Slider component random_seed=seed, # int | float in 'Seed' Number component n_candidates=3, # int | float (numeric value between 1 and 5) in 'Number waveforms to generate' Slider component api_name="/text2audio" ) print(result) return result def get_riffusion(prompt): client = Client("fffiloni/spectrogram-to-music") result = client.predict( prompt=prompt, # str in 'Musical prompt' Textbox component negative_prompt="", # str in 'Negative prompt' Textbox component audio_input=None, # filepath in 'parameter_4' Audio component duration=10, # float (numeric value between 5 and 10) in 'Duration in seconds' Slider component api_name="/predict" ) print(result) return result[1] def get_mustango(prompt): client = Client("fffiloni/mustango-API", hf_token=hf_token) result = client.predict( prompt=prompt, # str in 'Prompt' Textbox component steps=200, # float (numeric value between 100 and 200) in 'Steps' Slider component guidance=6, # float (numeric value between 1 and 10) in 'Guidance Scale' Slider component api_name="/predict" ) print(result) return result def get_musicgen(prompt): client = Client("https://facebook-musicgen.hf.space/") result = client.predict( prompt, # str in 'Describe your music' Textbox component None, # str (filepath or URL to file) in 'File' Audio component fn_index=0 ) print(result) return result[1] def get_stable_audio_open(prompt): client = Client("fffiloni/Stable-Audio-Open-A10", hf_token=hf_token) result = client.predict( prompt=prompt, seconds_total=10, steps=100, cfg_scale=7, api_name="/predict" ) print(result) return result import re import torch from transformers import pipeline zephyr_model = "HuggingFaceH4/zephyr-7b-beta" mixtral_model = "mistralai/Mixtral-8x7B-Instruct-v0.1" pipe = pipeline("text-generation", model=zephyr_model, torch_dtype=torch.bfloat16, device_map="auto") standard_sys = f""" You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users. In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model. For example, if a user says, "a picture of a man in a black suit and tie riding a black dragon", provide immediately a musical prompt corresponding to the image description. Immediately STOP after that. It should be EXACTLY in this format: "A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle" """ mustango_sys = f""" You are a musician AI whose job is to help users create their own music which its genre will reflect the character or scene from an image described by users. In particular, you need to respond succintly with few musical words, in a friendly tone, write a musical prompt for a music generation model, you MUST include chords progression. For example, if a user says, "a painting of three old women having tea party", provide immediately a musical prompt corresponding to the image description. Immediately STOP after that. It should be EXACTLY in this format: "The song is an instrumental. The song is in medium tempo with a classical guitar playing a lilting melody in accompaniment style. The song is emotional and romantic. The song is a romantic instrumental song. The chord sequence is Gm, F6, Ebm. The time signature is 4/4. This song is in Adagio. The key of this song is G minor." """ @spaces.GPU(enable_queue=True) def get_musical_prompt(user_prompt, chosen_model): """ if chosen_model == "Mustango" : agent_maker_sys = standard_sys else : agent_maker_sys = standard_sys """ agent_maker_sys = standard_sys instruction = f""" <|system|> {agent_maker_sys} <|user|> """ prompt = f"{instruction.strip()}\n{user_prompt}" outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) pattern = r'\<\|system\|\>(.*?)\<\|assistant\|\>' cleaned_text = re.sub(pattern, '', outputs[0]["generated_text"], flags=re.DOTALL) print(f"SUGGESTED Musical prompt: {cleaned_text}") return cleaned_text.lstrip("\n") def infer(image_in, chosen_model, api_status): if image_in == None : raise gr.Error("Please provide an image input") if chosen_model == [] : raise gr.Error("Please pick a model") if api_status == "api not ready yet" : raise gr.Error("This model is not ready yet, you can pick another one instead :)") gr.Info("Getting image caption with Kosmos-2...") user_prompt = get_caption(image_in) #user_prompt = get_caption_from_MD(image_in) gr.Info("Building a musical prompt according to the image caption ...") musical_prompt = get_musical_prompt(user_prompt, chosen_model) if chosen_model == "MAGNet" : gr.Info("Now calling MAGNet for music...") music_o = get_magnet(musical_prompt) elif chosen_model == "AudioLDM-2" : gr.Info("Now calling AudioLDM-2 for music...") music_o = get_audioldm(musical_prompt) elif chosen_model == "Riffusion" : gr.Info("Now calling Riffusion for music...") music_o = get_riffusion(musical_prompt) elif chosen_model == "Mustango" : gr.Info("Now calling Mustango for music...") music_o = get_mustango(musical_prompt) elif chosen_model == "MusicGen" : gr.Info("Now calling MusicGen for music...") music_o = get_musicgen(musical_prompt) elif chosen_model == "Stable Audio Open" : gr.Info("Now calling Stable Audio Open for music...") music_o = get_stable_audio_open(musical_prompt) return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o def retry(chosen_model, caption): musical_prompt = caption music_o = None if chosen_model == "MAGNet" : gr.Info("Now calling MAGNet for music...") music_o = get_magnet(musical_prompt) elif chosen_model == "AudioLDM-2" : gr.Info("Now calling AudioLDM-2 for music...") music_o = get_audioldm(musical_prompt) elif chosen_model == "Riffusion" : gr.Info("Now calling Riffusion for music...") music_o = get_riffusion(musical_prompt) elif chosen_model == "Mustango" : gr.Info("Now calling Mustango for music...") music_o = get_mustango(musical_prompt) elif chosen_model == "MusicGen" : gr.Info("Now calling MusicGen for music...") music_o = get_musicgen(musical_prompt) elif chosen_model == "Stable Audio Open" : gr.Info("Now calling Stable Audio Open for music...") music_o = get_stable_audio_open(musical_prompt) return music_o demo_title = "Image to Music V2" description = "Get music from a picture, compare text-to-music models" css = """ #col-container { margin: 0 auto; max-width: 980px; text-align: left; } #inspi-prompt textarea { font-size: 20px; line-height: 24px; font-weight: 600; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(f"""

{demo_title}

{description}

""") with gr.Row(): with gr.Column(): image_in = gr.Image( label = "Image reference", type = "filepath", elem_id = "image-in" ) with gr.Row(): chosen_model = gr.Dropdown( label = "Choose a model", choices = [ #"MAGNet", "AudioLDM-2", "Riffusion", "Mustango", #"MusicGen", "Stable Audio Open" ], value = None, filterable = False ) check_status = gr.Textbox( label="API status", interactive=False ) submit_btn = gr.Button("Make music from my pic !") gr.Examples( examples = [ ["examples/ocean_poet.jpeg"], ["examples/jasper_horace.jpeg"], ["examples/summer.jpeg"], ["examples/mona_diner.png"], ["examples/monalisa.png"], ["examples/santa.png"], ["examples/winter_hiking.png"], ["examples/teatime.jpeg"], ["examples/news_experts.jpeg"] ], fn = infer, inputs = [image_in, chosen_model], examples_per_page = 4 ) with gr.Column(): caption = gr.Textbox( label = "Inspirational musical prompt", interactive = False, elem_id = "inspi-prompt" ) retry_btn = gr.Button("Retry with edited prompt", visible=False) result = gr.Audio( label = "Music" ) chosen_model.change( fn = check_api, inputs = chosen_model, outputs = check_status, queue = False ) retry_btn.click( fn = retry, inputs = [chosen_model, caption], outputs = [result] ) submit_btn.click( fn = infer, inputs = [ image_in, chosen_model, check_status ], outputs =[ caption, retry_btn, result ] ) demo.queue(max_size=16).launch(show_api=False, show_error=True)