import torch import gradio as gr from transformers import AutoProcessor, MusicgenForConditionalGeneration from TTS.api import TTS import librosa import numpy as np import os import spaces os.environ["COQUI_TOS_AGREED"] = "1" processor = AutoProcessor.from_pretrained("facebook/musicgen-small") model_musicgen = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") model_tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2", progress_bar=False).to("cpu") @spaces.GPU() def generate_music(text_prompt, audio_file=None, tts_text=None): inputs = processor(text=text_prompt, padding=True, return_tensors="pt") max_duration_sec = 600 min_duration_sec = 30 max_new_tokens = int(max_duration_sec * model_musicgen.config.min_length) min_new_tokens = int(min_duration_sec * model_musicgen.config.min_length) audio_values = model_musicgen.generate(**inputs.to("cpu")) music = audio_values.cpu().numpy()[0] audio_prompt = audio_file if audio_prompt and tts_text: cloned_audio = model_tts.tts_with_vc(tts_text, speaker_wav=audio_prompt, language="es") if model_tts.synthesizer.output_sample_rate != 44100: cloned_audio, _ = librosa.resample(cloned_audio, model_tts.synthesizer.output_sample_rate, 44100) try: music_np = librosa.util.buf_to_float(music, n_bytes=2) # Pad the shorter array if len(music_np) > len(cloned_audio): cloned_audio = np.pad(cloned_audio, (0, len(music_np) - len(cloned_audio))) else: music_np = np.pad(music_np, (0, len(cloned_audio) - len(music_np))) combined_audio = music_np + cloned_audio # Normalize and convert to int16 combined_audio = combined_audio / np.max(np.abs(combined_audio)) combined_audio_int16 = (combined_audio * 32767).astype(np.int16) return (44100, combined_audio_int16) except Exception as e: print(f"Error combining audio: {e}") return (44100, music) return (44100, music) iface = gr.Interface( fn=generate_music, inputs=[ gr.Textbox(label="Descripción de la música"), gr.Audio(type="filepath", label="Subir audio de voz"), gr.Textbox(label="Texto para clonar la voz (Opcional)"), ], outputs=gr.Audio(label="Música generada", type="numpy"), title="Generador de Música con MusicGen y XTTS", description="Introduce una descripción de la música que deseas generar y opcionalmente un audio de voz para clonar con texto.", ) iface.launch()